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Abstract 
The paper presents the method for numerical determination of electromechanical 
eigenvalues of the system state matrix on the basis of the recorded instantaneous 
power waveforms in generating units or transmission lines. The sequence, hybrid 
algorithm being the combination of the genetic algorithm and the Newton gradient 
algorithm with limitations was used in computations. The electromechanical eigen-
values computed are the basis for determining the PS angular stability factors intro-
duced. 
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Introduction 

Disturbances occurring during the exploitation of a power 
system (PS) result in  appearing slow-variable, oscillatory 
changes of the synchronous generator rotational speed, i.e. 
electromechanical swings. These swings also appear in 
instantaneous power waveforms (called conventionally 
active power waveforms) in different system sites, among 
others generating units and transmission lines. Their char-
acteristic feature is low frequency (from the range of 0.1÷2 
Hz) and relatively small damping decrement. The possibility 
of the appearance of weakly damped electromechanical 
swings increases in large power systems. It is the conse-
quence of the increase in the number of: 
• synchronous generators of high rated power character-

ised by large relative synchronous reactance, 
• static excitation sources controlled by means of fast 

voltage regulators of large gain, 
• high voltage transmission lines of significant length, 
• distributed sources. 

These swings limit the possibility of electrical energy trans-
mission and, under unfavourable conditions, they can result 
in the loss of the system stability. That is why it is important 
from both theoretical and practical point of view to measure 
and analyse power swings occurring in PS. 

The determination of the stability factors is more and more 
significant because of the continuous increase in the num-
ber and unitary power of distributed sources (especially 
wind farms) installed in the system. The transient states 
caused by unstable operation of the distributed sources, in 
particular by switching them off, can result in significant  
power swings of the generators installed near these 
sources. So the determination of the stability is necessary 
for correct planning the investments connected with the 
distributed  power engineering. 

1. Stability factors 

When analysing the instantaneous power transient wave-
forms in generating units and transmission lines, it is possi-

ble to separate in them the modal components connected 
with particular eigenvalues of the state matrix of the PS 
linearised about the steady operating point. The modal 
components related to the electromechanical complex ei-
genvalues hhh ναλ j±=  (Paszek 1998) are of crucial sig-
nificance. They can either decay with or grow, dependently 
on the eigenvalue real part. Even if there is Re{λh} > 0 for 
only one eigenvalue, the system becomes unstable. 

It is possible to estimate approximately that the satisfactory 
decay of electromechanical swings in the system is obtained 
when the real parts of all eigenvalues are lower than, for 
instance, −0.3 (it is a conventional, estimated value). The 
setting time of the waveforms expressed by the inequality 
tust < 13 s corresponds to this value. Also other criterion 
conditions that should be met by the modal waveforms in 
PS can be worked out taking into account the relative or 
logarithmic damping coefficient connected with the electro-
mechanical eigenvalues. Owing to the above, the following 
power system angular stability factors are proposed: 
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2. Determination  
of electromechanical eigenvalues 

In order to determine the values of the PS angular stability 
factors proposed above, it is necessary to calculate the 
electromechanical eigenvalues. They can be computed on 
the basis of the state matrix of the system linearised about 
the operating point. They can also be computed by means 
of specialized algorithms - for instance AESOPS, PEALS 
(Sauer et al 1991) - basing only on the state equations of 

71AT&P journal  PLUS2 2008

POWER SYSTEM MODELING AND CONTROL



the particular generating units and the algebraic equation of 
the power network without the necessity of determining the 
whole state matrix of the system. However, in both men-
tioned cases there are great difficulties in determining the 
reliable mathematical models of the system elements and in 
working out the set of the real parameters of these models. 

That is why it seems useful to develop a method for comput-
ing the electromechanical eigenvalues based on measure-
ments of the real waveforms appearing in generating units 
and transmission lines after the occurrence of different dis-
turbances (introduced on purpose or random) of the system 
steady state. The new possibilities of taking these meas-
urements when using the technology WAMS (wide area 
measuring systems) make it even more purposeful. 

In the paper it is assumed that an impulse change of the 
reference voltage in the excitation system of a selected 
synchronous generator ( ) ( )tUtU zz δ∆∆ =  is introduced to 
the multimachine PS. There are analysed the waveforms of 
the generator instantaneous power deviations (from the 
steady state) in the particular generating nodes of the sys-
tem. At the single eigenvalues of the state matrix, these 
waveforms (for the system model linearised about the oper-
ating point) can be presented in the form (Kudła and Paszek 
1995): 
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where: ∆P, ∆Uz - vectors of deviations of the instantaneous 
power and reference voltage (impulse change) in particular 
generating units, Vh, Wh - right- and left-hand eigenvectors 
of the state matrix corresponding to the h-th eigenvalue, C, 
B - matrices of the system output and input. 

From the theoretical point of view, all modal components 
connected with the particular eigenvalues of the state matrix 
occur in the waveform of each state variable and each out-
put quantity. In practice, when analysing the instantaneous 
power waveforms in the  particular generating units within 
the time range, for instance (1-10 s), after appearing the 
disturbance, only several (usually from 1 to 5) significant 
modal components connected with the electromechanical 
eigenvalues can be observed. The amplitudes of other 
components are either very small or they decay quickly after 
the disturbance – the real parts of the appropriate eigenval-
ues are negative and their modulus is large. On the other 
hand, the modal components related to the particular elec-
tromechanical eigenvalues have significant amplitudes usu-
ally in two, three instantaneous power waveforms of the 
particular generating units. Bearing that in mind, by analys-
ing and decomposing the instantaneous power waveforms 
in the  particular generating units, it is possible to compute 
all electromechanical eigenvalues of the system. The num-
ber of the electromechanical eigenvalues (of the positive 
imaginary part) is equal to the number of the PS generating 
units minus one. 

3. Determination  
of electromechanical eigenvalues 

Exemplary computations were carried out for a 7-machine 
Cigre PS shown in Fig. 1. 
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Fig.1 Cigre power system 

A mathematical model of a power system in the Matlab–
Simulink environment was constructed by  connecting the 
generating units via the reduced power network. A general 
model of the generating unit is presented in Fig. 2. In this 
model, using the “Configurable Subsystems” type blocks, it 
is possible to create a specific model of the generating unit 
when choosing the specific model of: a synchronous gen-
erator, an excitation system, a turbine and PSS (Paszek and 
Pawłowski 2007). 

It was assumed in computations that all synchronous gen-
erators were represented by a non-linear model of a GEN-
ROU turbogenerator (De Mello and P. Hannett 1986). Four 
equivalent electric circuits in the rotor, two in the d axis 
(excitation circuit and one damper circuit) and two in the q 
axis (two damper circuits) correspond to this model. It was 
assumed that the excitation systems were represented by a 
nonlinear model of the Polish national static excitation sys-
tem, and the turbines by an IEEEG1 steam turbine model 
(Paszek and Pawłowski 2007). The system stabilizer 
PSS3B was introduced to the first generating unit. 

The disturbance was assumed to be an impulse change of 
the reference voltage in the synchronous generator excita-
tion system of the first generating unit ( ) ( )tUtU zz δ∆∆ = , 

zuz UU *03.0=∆ , zuU - reference voltage in the steady 
state. 
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Fig.2 Structural model of generating unit  

in the Matlab–Simulink environment 

Linearization of the state equations of the system analysed 
was performed in the Matlab-Simulink environment. There 
were computed: the state matrix  (of dimension 95× 95), 
matrices B and C, the eigenvalues (including six electrome-
chanical ones presented in Tab. 1), the right- and left-hand 
eigenvectors as well as the instantaneous power waveforms 
in the particular (i-th) generating units which can be ap-
proximately given by the following relationship: 
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Only the significant modal components related to the elec-
tromechanical eigenvalues (Tab. 1) are taken into account 
in Eq. (5), while the complex amplitudes of the waveforms 
Aih result from Eq. (4) when taking into account the complex, 
conjugate electromechanical eigenvalues. Tab. 2 gives the 
values of the significant complex amplitudes of the instanta-
neous power waveforms in the particular generating units 
which are taken into account in the computations. 

 
 Eigenvalue 
λ1 -0.8038 +j 8.6480 
λ2 -0.7159 +j 10.0585 
λ3 -0.5333 +j 10.4212 
λ4 -0.3795 +j 9.3543 
λ5 -0.2713 +j 6.4525 
λ6 -0.1507 +j 7.8709 

Tab.1 Electromechanical eigenvalue 

 
 Significant modal component 

∆P1 A11= |1.4741| e-j0.0991,  A15= |3.5464| ej 2.3828
, 

∆P2 A21= |1.7005| e-j2.8272,  A24= |1.7628| e-j0.5444
, 

A25= |4.0472| ej 1.8983
, 

∆P3 A34= |2.0176| e-j0.7583,  A35= |1.4189| e-j0.9010
, 

A36= |5.9601| ej 2.5631
, 

∆P4 A43= |3.9529| ej3.0581,  A44= |3.6418| ej2.2687
, 

A45= |1.4498| e-j 0.7974
,  A46= |1.0925| ej 2.3524, 

∆P5 A52= |1.3329| ej3.1271,  A53= |1.0031| e-j0.0977
, 

A54= |10.2133| ej 2.7485
,  A55= |1.6886| e-j 0.9303, 

A56= |2.2702| e-j 0.4130, 
∆P6 A62= |1.0552| ej0.0363,  A64= |3.6457| ej 2.8603

, 
Tab.2 Significant modal components 

The electromechanical eigenvalues λh, as well as the values 
of the significant complex amplitudes Aih, can be determined 
numerically by analysing the recorded instantaneous power 
waveforms in the particular generating units. The problem of 
determining λh and Aih values was brought to the minimisa-
tion of the objective function describing the differences be-
tween the true (recorded at the investigated node of the 
network) and approximating waveform. In the paper the 
waveforms obtained from simulations on the basis of the 
equation (5) are assumed to be the true ones. The objective 
function being minimised is a function of several variables 
(searched parameters), the number of which depends on 
the number of the significant modal components present in 
the waveform. Each modal component depends on four real 
parameters (the real and imaginary part of the eigenvalue λh 
as well as the modulus and argument of the complex ampli-
tude Aih). In the Cigre system considered two significant 
modal components occur in the instantaneous power wave-
form of the first node, so this waveform is determined by 
eight real parameters, whereas there are five components in 
the power waveform of the fifth node, which means twenty 
real parameters (Tab. 2). 

The reduction in the number of the searched variables (pa-
rameters) at the successive stages was achieved by taking 
into account in computations the eigenvalues determined 
previously. For instance, when analysing the waveforms at 
the second node it can be assumed that the eigenvalues λ1 
and λ5 were previously determined correctly by analysing 
the waveforms at the first node of the PS investigated. Such 
a solution requires, however, an additional analysis of the 
system investigated, for instance by using the method of 
participation factors (Paszek 1998). 

In the investigations presented the objective function was 
minimised by using the sequence, hybrid algorithm being 
the combination of the genetic algorithm (Rutkowska et al 
1999) and the Newton gradient algorithm with limitations. 

The genetic algorithm belongs to global minimisation algo-
rithms (Rutkowska et al 1999) and does not require the 
determination of the starting point, only the search region. 
Its disadvantage is a not precisely determined stopping 
criterion. On the other hand, the Newton algorithm is used 
for searching the local minimum and the result depends 
significantly on the starting point assumed (Rade and 
Westergren 2004). If these two algorithms are combined in 
such a way that the genetic algorithm determines the start-
ing point for the Newton algorithm, their basic disadvan-
tages can be eliminated. 

The exemplary instantaneous active power waveforms for 
the system investigated are shown in Fig. 3. There are 
marked the bands of the power waveforms limited by the 
waveforms of the maximum and minimum values of the 
power determined according to the relationship (5) for the 
maximal errors obtained at the first optimisation stage by 
means of the genetic algorithm. 

In the computations there were assumed the following  
search regions for variables: 
• for  Re{λh} – (-0.9 ÷ 0.1 1/s), 
• for  Im{λh} – (0.63 ÷ 12.57 1/s), which corresponds to the 

swing frequency from 0.1 Hz to 2 Hz. 

In the example presented there were carried out the  re-
peated computations of the searched coefficients for par-
ticular PS generating units (200 trials for each generating 
node). On that basis the statistic analysis was performed 
and the maximal errors for the particular eigenvalues were 
determined. The results obtained are shown in Fig. 4. Since 
the waveforms got from the computer simulation were as-
sumed to be the true ones in the computations, the errors 
obtained were small. That is why the value of the error loga-
rithm for the particular modal values is presented in Fig. 4. 

Since the modal components  can appear in different net-
work nodes, the error values obtained for the particular 
generating units are marked in Fig. 4. 
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Fig.3 Instantaneous power deviations  

in first and seventh generating unit 
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Fig.4 Histograms of error logarithm of determining  

the searched modal components 

The values of the PS angular stability factors were com-
puted on the basis of the modal values calculated numeri-
cally according to the relationships (1) ÷ (3). They are given 
in Tab. 3. 

 
 The worst value 

computed True value Error 

W1 -0.150246 -0.150700 0.30% 
W2 -0.019119 -0.019143 0.12% 
W3 -2.118979 -2.117759 -0.05% 

Tab.3 Angular stability factors 

Conclusion  

On the basis of the computations presented, it can be stated 
that: 
• the error values obtained for the particular electrome-

chanical eigenvalues do not exceed 2% (Fig. 4), 

• the errors of determining the eigenvalues result in the 
errors of the angular stability factor values not larger 
than 0.5% for the factor W1 and 0.2% for the other fac-
tors. 

Summing up, the proposed method for numerical determina-
tion of electromechanical eigenvalues and modal compo-
nents based on the approximation of instantaneous power 
waveforms gives the correct results. 

The proposed method for determination of the stability fac-
tors can be used for the analysis of the stability of the sys-
tem in which there is installed  the significant number of 
distributed sources. 
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