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Anisotropic balanced truncation — 
application to reduced-order 
controller design 

Michael Tchaikovsky 

Abstract 
This paper addresses the problem of reduced-order normalized anisotropic optimal 
controller design by anisotropic balanced truncation. This controller is the solution to 
the normalized anisotropy-based stochastic ∞H  problem. Anisotropic balanced 
truncation is aimed at reducing the order of closed-loop system. Two respective 
Riccati equations involved are used to define a set of closed-loop input-output 
invariants of  closed-loop system called anisotropic characteristic values. The part of 
controller corresponding to smaller anisotropic characteristic values is truncated to 
give a reduced-order one. Truncation is carried out for the closed-loop state-space 
realization in anisotropic balanced coordinates, when the product of two respective 
solutions of Riccati equations is a diagonal matrix with the squares of anisotropic 
characteristic values situated in descending order on its main diagonal. In 
anisotropic balanced coordinates, small characteristic values correspond to states 
which are easy to filter and control in a sense of anisotropic norm. It is shown that 
the reduced-order anisotropic controller is the full-order one for the reduced-order 
plant. An example of application to flight control in a windshear is given. 

Keywords: stochastic norm, information, order reduction 

 
Introduction 

The stochastic approach to ∞H  optimization introduced 
in [1], [2] is based on using the anisotropic norm of a system 
as performance criterion. The anisotropic norm being a 
special case of stochastic norm is a quantitative index of 
system sensitivity to random input disturbances with mean 
anisotropy bounded by known nonnegative parameter. In 
turn, the mean anisotropy of a vector random sequence 
produced by a stable shaping filter from vector zero-mean 
Gaussian white noise with scalar covariance matrix is a 
measure of colouredness of this sequence, that is a 
measure of correlation of vector components of the 
sequence (spatial part of the mean anisotropy), as well as a 
measure of correlation of different elements of this 
sequence (temporal part of the mean anisotropy). The latter 
coincides with the mutual information about an element of 
the sequence contained in the past history of this sequence. 
It has been shown that  and  norms of a linear 
discrete time-invariant system are two limiting cases of the 
anisotropic norm as the mean anisotropy level of input 
random disturbance tends to zero or infinity, respectively. 
Therefore, this approach combines the attractive features of 
robust control and information theories holding an 
intermediate position between /LQG and  problems. 
Given a standard plant model and input mean anisotropy 
level, the anisotropy-based stochastic  problem consists 
in finding an output-feedback dynamic controller to internally 
stabilize the closed-loop system and minimize its anisotropic 
norm. The solution to this problem presented in [2] yields to 
the full-order controller and results in solving a cross-
coupled nonlinear algebraic equation system defining the 
controller state-space realization matrices. However, we are 

interested in obtaining a reduced-order anisotropic 
controller. 

2H ∞H

2H ∞H

∞H

The approximative approach to model reduction according 
to minimum anisotropic norm performance was introduced 
in [3]. A reduced-order model obtained by this method 
approximates the behaviour of a full-order system in steady-
state mode, but it does not reflect the full-order system 
dynamics, since does not take into account pole locations of 
full- and reduced-order systems at all. Besides that, this 
method is intended for an open-loop system, therefore it 
accounts for neither controller properties nor even controller 
presence. This paper addresses the problem of reduced-
order normalized anisotropic optimal controller design by 
means of anisotropic balanced truncation, which is close to 
LQG and ∞H  balanced truncation techniques developed 
in [4], [5], correspondingly, and aimed at reducing the order 
of a closed-loop system. Two respective Riccati equations 
involved are used to define a set of closed-loop input-output 
system invariants called the anisotropic characteristic 
values. The part of the plant or controller corresponding to 
smaller anisotropic characteristic values is truncated to give 
a reduced-order plant or controller. Truncation is carried out 
for the closed-loop realization in anisotropic balanced 
coordinates, when the product of two respective solutions of  
the Riccati equations is a diagonal matrix with the squares 
of anisotropic characteristic values situated in descending 
order on its main diagonal. In anisotropic balanced 
coordinates, small characteristic values correspond to states 
which are easy to filter and control in a sense of anisotropic 
norm. It will be shown that the reduced-order controller is 
the full-order one for the reduced-order plant. 

The paper structure is as follows. In Section 1 we consider 
the normalized anisotropy-based  problem. 
Subsection 1.1 introduces the problem statement together 

∞H
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with some necessary background. The state-space structure 
of the worst-case input shaping filter together with a 
sufficient saddle-point type condition for optimality of a 
controller in the problem are given in Subsection 1.2. The 
algebraic equation system defining the state-estimating 
optimal controller is introduced in Subsection 1.3. The 
technique of controller order reduction by anisotropic 
balanced truncation is considered in Section 2. The notion 
of anisotropic characteristic values is introduced in 
Subsection 2.1 together with a nonsingular similarity 
transformation putting the system realization into the 
anisotropic balanced coordinates. Subsection 2.2 
represents the expressions for state-space realizations of 
reduced-order plant and anisotropic controller. Section 3 is 
devoted to an example of reduced-order anisotropic 
controller design for longitudinal flight control in a 
windshear. 

1. Normalized anisotropy-based stochastic 
 optimization problem ∞H

The normalized anisotropy-based stochastic  problem is 
characterized by some features making it different from the 
general-case problem considered in [2]. To disclose these 
important distinctions, it is preferable to consider in details 
the statement and solution of the normalized problem. 

∞H

1.1 Problem statement 

All the encountered random elements are assumed to be 
defined on a complete probability space  with the 
set  of primary outcomes, the -algebra  of random 
events, and the probability measure P  with the 
corresponding expectation functional  

( , , )Ω PF
Ω σ F

.E

Consider a linear discrete time-invariant causal plant  
with -dimensional internal state 

( )P z
n ,X  -dimensional 

disturbance input  -dimensional control input  
1m

,W 2m ,U 1p -
dimensional controlled output ,Z  and 2p -dimensional 
measured output  All these signals are double-sided 
discrete-time sequences related to each other by the 
equations 

.Y

1 1 2

1 12

2 21

0 ,
0

k k

k k

k k

x A B B x
z C D w
y C D u

+⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  (1) 

where all matrices have appropriate dimensions, 
1 1 2 2 ,p m p m= = +  and the matrices 

[ ]
2

2

2
1 2 21 1 12

0
0 , 0 , , .

0p
m

C
B B D I C D

I
⎡ ⎤⎡ ⎤⎡ ⎤= = = = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2) 

The state-space realization 2 2( , , )A B C  is assumed to be 
minimal (i.e. 2( , )A B  is controllable, 2( , )A C  is observable). 
Plant (1) is called the normalized standard plant. It is easily 
seen that the normalized standard plant has the controlled 
output 

1 2

2

Z C X
Z

Z U
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

  (3) 

and the disturbance input 

1

2

W
W

W
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (4) 

partitioned into -dimensional block  and 2m 1W 2p -
dimensional block  such that  enters the system 
together with the control signal (actuator noise) while  
affects upon the measured output  (measurement noise). 

2W 1W

2W
Y

The only prior information on the probability distribution of 
the random external disturbance W  consists in the 
following: W  is a stationary Gaussian sequence with mean 
anisotropy bounded by a known nonnegative parameter .α  
Specifically, the latter means that W  is produced from -
dimensional Gaussian white noise V  with zero mean and 
identity covariance matrix:   

1m

( ) 0,kvE = ,
1

T( )k k mv v I=E

,k−∞ < < +∞  by an unknown shaping filter G  in the family 

{ }1 1
2 : ( ) ,m mG G×

α ∈ αA�G H    

where 

l l*1
2
2

1( ) lndet ( ) ( )
4

mG G G
G

π

−π

⎧ ⎫⎪ ⎪d= − ω⎨ ⎬π ⎪ ⎪⎩ ⎭
∫A ω ω    

is the mean anisotropy functional introduced in [1] (also 
called the mean anisotropy), the angular boundary value 

l
1 0

( ) lim ( e ),i
r

G G r ω

→ −
ω �    

and 

l l{ }
1/ 2

*

2
1 tr ( ) ( ) .
2

G G G d
π

−π

⎧ ⎫⎪ ⎪ω ω ω⎨ ⎬π⎪ ⎪⎩ ⎭
∫�  

At that, no assumption is made in respect of cross-
correlation of blocks  and  1W 2.W

The normalized anisotropy-based stochastic ∞H  
optimization problem is formulated as follows. 

Problem 1. Given normalized standard plant (1) and input 
mean anisotropy level 0,α  find a strictly causal controller 
K  to internally stabilize the closed-loop system  given 
by the lower linear-fractional transformation of the pair 

 

( )F z

( , ) :P K

2

1
11 12 22 21( ) ( , ) ( ) ,l pF z P K P P K I P K P−= = + −F   (5) 

where 

( ) , , 1,2,j
ij

i ij

A B
P z i jC D

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∼   (6) 

and minimize its α -anisotropic norm: 

2

2

sup inf , .
KG

FG
F K

Gα
α ∈

→ ∈�
G

K   (7) 

The formulated problem (just as any of minimax problems) 
can be considered as an antagonistic game of two 
opponents, control system designer and nature. The set of 
designer's strategies in this game is the set  of internally 
stabilizing controllers, and the set of nature's strategies is 
the family 

K

αG  of filters generating random sequences with 
mean anisotropy bounded by known parameter 0.α  

Denote that in the case of zero mean anisotropy level 0α =  
the formulated above problem coincides with the normalized 
LQG problem considered in [4], [5]. 
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1.2 Worst-case shaping filter for closed-loop system 

Since problem (7) is a minimax problem, one can use the 
results of differential game theory to formulate a saddle-
point type condition of optimality. For any shaping filter 

 and any internally stabilizing controller G α∈G ,K∈K  let us 
introduce the following sets 

2( ) Argmin , ,
K

G FG G◊
α

∈
∈�

K
K G   (8) 

2

2

( ) Argmax , .
G

FG
K K

Gα

◊
α

∈
∈�

G
G K   (9) 

These sets are assumed to be nonempty. Set (5) consists of 
the controllers being solutions to the weighted LQG problem 
under the assumption that the closed-loop system input is 
fed with coloured noise .W GV=  Any such controller 

( )K G◊∈K  minimizes variance of the output random 
sequence Z  (LQG-cost) 

2

T T
2 2T

LQG
0

( ) ( )
0

k k
k k

k km

x xC C
J FG z z

u uI

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤⎜= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎝
E E� ⎟

⎟
⎠

  (10) 

of weighted closed-loop system  with input 
disturbance  

FG
.V

In turn, set (9) is formed by the filters generating Gaussian 
random sequences W  with spectral densities 

� l l*( ) ( ) ( ), [ , ],WWS G Gω = ω ω ω∈ −π π    

which are the worst (i.e. the most adverse) for the closed-
loop system  Although the set ( ) ( , ).lF z P K= F ( )K◊

αG  is 
invariant under right-hand multiplication by an all-pass 
system, and hence, consists of infinite number of filters, all 
of them generate the sequences with the unique up to 
scalar multiplier worst-case spectral density [1]. Such filters 
are called the worst-case input shaping filters. 

Thus the relation 

( )

( )( ) ( ),
G K

K G
◊
α

◊ ◊ ◊
α

∈

∈D � ∪
G

K G K KK

2

.

   

defines the (generally set-valued) composition 
 of the mappings  and 

 The following lemma that can be proved 
similar to Lemma 1 in [2] establishes a sufficient saddle-
point type condition of optimality for problem (7). 

: 2◊ ◊
α →D KK G K :◊ ◊

α → KK G

: 2
◊
α◊ ◊

α → GG K

Lemma 1. If a controller  is a stationary point of the 
mapping  that is, if there exists a shaping filter  
such that 

K
,◊ ◊

αDK G G

( ), ( ),K G G◊ ◊
α∈ ∈K G K    

then the controller  is a solution to problem (7). K

Let  be an admissible controller with -dimensional 
internal state  related with the measurement Y  and 
control sequence U  by the equations 

K∈K n
H

1 c c

c
,0

k k

k k

h A B h
u C y
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (11) 

where c ,A  c ,B   are constant matrices of appropriate 
dimensions. Then the state-space realization of closed-loop 
system (5) is given by 

cC

2 c 1
cl cl

c 2 c c 21
cl

1 12 c

( ) 0
0

A B C BA B
F z B C A B DC

C D C

⎡ ⎤
⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

∼   (12) 

with clA  stable, that is, taking into account (2)–(4), input W  
and output Z  of the closed-loop system F  are related by 
the equations 

1 2 c 2

1 c 2 c

1 2 1

2 c

0
0

.
0 0 0

0 0 0

k k

k c

k k

k k

x A B C B x
h B C A B h
z C w
z C

+

+

2

k

w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   

It is assumed that the system  satisfies strict inequality ( )F z

2
1

1 ,F F
m ∞<   (13) 

otherwise, its anisotropic norm coincides trivially with the 
scaled  norm. It should be noted that inequality (13) is 
violated iff the closed-loop system 

2H
F  is inner up to a 

nonzero constant factor, in which case there exists a 

number 0λ >  such that  for almost all l l*
1( ) ( ) mF F Iω ω = λ

[ , ]ω∈ −π π  [1]. 

Lemma 2. Let the realization 2 2( , , )A B C  of plant (1) be 
minimal, and let the closed-loop system F  not be inner. 
Then, for any  controller  and given level of input 
mean anisotropy 

K∈K
0,λ  there exists a unique pair ( ,  of 

the scalar parameter 

)q R
2[0, )q F −

∞∈  and stabilizing solution 

 of the algebraic Riccati equation T 0R R=

[ ]
1

T T T
cl cl cl cl

T 1
cl cl

T
1 2 cl cl

( )m

1R A RA qC C L L

I B RB

L L L B RA

−

−

⎫= + + Σ
⎪⎪Σ − ⎬
⎪

= Σ ⎪⎭

�

�

  (14) 

such that 

1
T

c

1 lndet ,
2 tr( )

m
LP L

⎧ ⎫Σ⎪ ⎪− = α⎨ ⎬
+ Σ⎪ ⎪⎩ ⎭

  (15) 

where T
c c 0P P= >  is the controllability gramian of the 

shaping filter 

1/ 2
cl cl cl

1/ 2( )
A B L B

G z
L

⎡ ⎤+ Σ
⎢ ⎥

Σ⎢ ⎥⎣ ⎦
∼   (16) 

satisfying the Lyapunov equation 
T T

c cl cl c cl cl cl cl( ) ( )P A B L P A B L B B= + + + Σ .   (17) 

At that, filter (16) is a representative of set (9) of the worst-
case input shaping filters satisfying factorization 

l l l l
1

* * 1( ) ( ) ( ( ) ( )) .mG G I qF F −ω ω = − ω ω    

Proof of this lemma follows immediately from Theorem 2 
in [1] applied to closed-loop system (12). 

Remark 1. Recall that a solution T 2 2n nR R ×= ∈\  of 
algebraic Riccati equation (14) is called stabilizing one if the 
matrix cl clA B L+  is stable and  For any controller 0.Σ >

K∈K  and 2[0, )q F −
∞∈  equation (14) has a unique 
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stabilizing solution and this solution is a positive semidefinite 
matrix [1]. 

 
Fig.1 Block diagram of weighted closed-loop 

system  FG

Remark 2. The internal state of the worst-case shaping filter 
 actually is a copy of the internal state of the closed-loop 

system 
G

F  (see block diagram at Fig. 1). Thus, 
equations (1) and (11) combined with 

1/ 2
1 2k k kw L x L h v= + + Σ k    

relate the input  output  and internal state 
 of worst-case shaping filter (16). Taking into account 

partitioning (4) of filter output  one can put down the 
following equations 

,V ,W GV=
( , )X H

,W

�

�

�

�

12 11 2 c 12 21

21 c 2 21 c c 22 c

1 111 12

2 221 22

( )

( )
k

k
k

k
k

k
k

A B L B C L Bx
x

h B C L A B L B
h

w L L v
w L L

+

+

⎡ ⎤+ + Σ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ + + Σ ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ Σ ⎢ ⎥⎢⎢ ⎥ ⎣ ⎦⎢⎣ ⎦ Σ⎣

⎥
⎥
⎦

   

defining the dynamics of the worst-case shaping filter  
where 

( ),G z

[ ]11 12
1 2

21 22
,

L L
L L L

L L
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

  (18) 

�

�

� �

� �
1 11 12 1/ 2

2 21 22
.

⎡ ⎤ ⎡ ⎤Σ Σ Σ
= =⎢ ⎥ ⎢ ⎥

Σ Σ Σ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Σ   (19) 

For weighted closed-loop system  we have FG

�

�
11 2 11 2 c 12 2

1 2c 2 21 c c 22 c

1 2

2 c

( )

( ) .
0 0

0 0

k
k

k
k

k
k

k

x A B L B C L B
x

h B C L A B L B h
z C v
z C

+

+

⎡ + + Σ⎡ ⎤ ⎡ ⎤⎢⎢ ⎥ ⎢ ⎥+ + Σ⎢⎢ ⎥ = ⎢ ⎥⎢⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥

◊

  (20) 

1.3 Optimal state-estimating controller for weighted 
LQG problem 

Let us fix the worst-case input shaping filter G◊
α∈G  defined 

by Lemma 2 and consider the weighted plant 

�

�

�

�
2

11 12

21 22

12 11 2 12 2 2

12 11 2 12 2

22 21 22 2

2

22 21 22

0 ( )

0 ( ) 0 ,
0 0 0

0 0 0 0

0

G

c

c c c

m

P G P
P

P G P

A B L B L B B

A B L B C L B

B C L A B L B
C

I

C L L

◊

◊

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤Σ
⎢ ⎥

+ + Σ⎢ ⎥
⎢ ⎥+ + Σ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ⎢ ⎥⎣ ⎦

�

∼

0

0

  (21) 

where  are defined by (6), with two inputs V  (Gaussian 

white noise) and  two outputs   and 3 -

dimensional internal state  where 

ijP

,U 1

2
,

Z
Z

Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,Y n

0 0( , , ),X X H 0 0( , )X H  is 
the internal state of the worst-case shaping filter G◊  (see 
Fig. 2). 

 
Fig.2 Block diagram of plant  for weighted 

LQG problem 
GP

With the fixed worst-case input shaping filter, Problem 1 is 
equivalent to the following weighted LQG problem for 
plant (21). 

Problem 2. Given the weighted plant  find a strictly 
causal controller 

,GP
K  to internally stabilize closed-loop 

system  and minimize LQG cost (10): ( , )G l GF P= F K

LQG ( ) inf .G K
J F

∈
→

K
  (22) 

Since in general the internal state  of plant (1) is not 
measurable, and the measurement Y  includes additive 
noise  the desired controller  can be only the state-
estimating output-feedback controller with the internal state 

 being the optimal mean-square estimate of the internal 
state  of plant (1). 

X

2 ,W K

H
X

Let  denote the Y
kF σ -algebra of random events induced by 

the history  of the measurement signal  at instant 

 and 

( )j j ky Y

,k ( )Yk k−∞< <+∞F  be the flow of -algebras in  
generated by the sequence  

σ F
.Y

Recall that stabilizing controller (11) is called state-
estimating one if its -dimensional internal state  
coincides with the sequence of one-step predictors for the 
internal state  of plant (1) by the measurement signal Y  
under the worst-case input disturbance  i.e. if 

n H

X
,W

1( | ), ,Y
k k kh x k−= −∞ < < +∞E F    

when W GV=  with the worst-case input shaping filter 
 [2]. ( )G K◊

α∈G

Let us consider the weighted closed-loop system  
introduced by state-space equations (20) (see Fig. 2). In this 
system, the following relations between the flows of 

FG

σ -
algebras generated by the stationary Gaussian sequences 
are valid: 

1 ,H Y V X
k k k k k−⊂ ⊂ ⊃ −∞ < < +∞F F F F .

),

  (23) 

Denote by 

1

1 1

1

ˆ ( | ),
ˆ̂ ( |

ˆ ( | )

Y
k k k

Y
k k k

Y
k k k

x x

x x

y y

−

+ −

−

E

E

E

�

�

�

F

F

F

  (24) 

the one-step and two-step predictors of the state  by 
observation  as well as the one-step self-predictor of the 

X
,Y
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measurement  Predictors (24) are -measurable, and 
the following prediction errors correspond to them: 

.Y 1
Y
k−F

1
ˆˆ ˆ, ,k k k k k k k k kˆ .x x x x x x y y y+− −�� � �� � � −

k

k

  (25) 

As it was noted in [2], the sequence of measurement 
prediction errors  is the martingale-difference [6] 

with respect to the flow  and, hence, the zero-
mean Gaussian white noise. 

( )k ky −∞< <+∞�

( )Yk k−∞< <+∞F

From equations (1), (2), (20) and inclusions (23), we have 
the following expressions for predictors (24) and prediction 
errors (25): 

2 11 2 c 12

2 21 22

ˆ̂ ˆ( ) ( ) ,
ˆ ˆ( )
k k

k k k

x A B L x B C L h
y C L x L h

⎫= + + + ⎪
⎬

= + + ⎪⎭
  (26) 

�

�
12 11 2

22 21

( )
.

( )
k k

k k k

x A B L x B v

y C L x v

⎫= + + Σ ⎪
⎬

= + + Σ ⎪⎭

�� �

� �
  (27) 

By virtue of Normal Correlation Lemma [6], the predictor 
1ˆkx +  is given by 

T T 1
1

ˆˆ ˆ ( )[ ( )]k k k k k k k ,x x x y y y y−
+ = + E E�� � � � �   (28) 

whereas the covariance matrix of prediction error kx�  is 

T T T T 1( ) ( ) ( )[ ( )] (k k k k k k k k k k
T ).x x x x x y y y y x−= −E E E E E� � � �� � � � � � � � � �   (29) 

Denoting 
T( ),   (30) k kS x xE � ��

T ,

let us express the covariance matrices in (29) from 
equation (27) as follows: 

T T
2 11 2 11 2 11 2

T T
2 21 2 21 22

T T
2 11 2 21 2 12

( ) ( ) ( )

( ) ( ) ( ) ,

( ) ( ) ( ) ,

k k

k k

k k

x x A B L S A B L B B

y y C L S C L

x y A B L S C L B

= + + + Σ

= + + + Σ

= + + + Σ

E

E

E

� �� �

� �
�� �

  (31) 

where 

�

�
� �T T111 12
1 2

21 22 2
.

⎡ ⎤Σ Σ Σ⎡ ⎤ ⎡ ⎤= Σ Σ =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦Σ Σ Σ⎣ ⎦ ⎢ ⎥⎣ ⎦
Σ

,Θ

T

)

  (32) 

Introducing the notation 
T T( ) , ( )k k k ky y x yΘ ΛE E �� � � �� �   (33) 

from (29)–(31) we obtain the filtering algebraic Riccati 
equation 

T T
2 11 2 11 2 11 2

T
2 21 2 21 22

T 1
2 11 2 21 2 12

( ) ( )

( ) ( )

(( ) ( ) )

S A B L S A B L B B

C L S C L

A B L S C L B −

⎫= + + + Σ − ΛΘΛ
⎪⎪Θ + + + Σ ⎬
⎪Λ + + + Σ Θ ⎪⎭

�

�

  (34) 

in the prediction error covariance matrix  .S

Remark 3. Denote that Riccati equation (34) has a unique 
stabilizing positive definite solution  such that 
the matrix 

T n nS S ×= ∈\
2 11 2 21(A B L C L+ − Λ +  is stable [7]. 

Substituting (26) and (33) to (28) with 

2 21 22ˆ( )k k ky y C L x L h= − + −� k    

in mind, we obtain 

1 2 11 2 21

2 c 12 22

ˆ ˆ( ( ))
( ( ) ) .

k k

k k

x A B L C L x
B C L L h y

+ = + − Λ +
+ + − Λ + Λ

   

The last equation together with controller equations (11) 
shows that the sequence  is produced from 

the measurement Y  by the system  (i.e. 

l ˆ( )k kX x −∞< <+∞=

( )E z lX EY= ) with 

-dimensional internal state 2n l( , )X H  and the state-space 
realization 

2 11 2 21 2 12 2 c 22

c c

( )

( )
0 .

0 0n

E z

A B L C L B L B C L
A B

I

⎡ ⎤+ − Λ + + − Λ Λ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∼

  (35) 

The following lemma defines the state-space realization 
matrices of the state-estimating controller. 

Lemma 3. Let the state-space realization matrices of 
stabilizing controller (11) be given by 

c 2 c 1 2

c

( ) (
,

A A B C M C M
B

= + + − Λ +
= Λ

2 ),   (36) 

where 

1 11 12 2 21 22, ,M L L M L L+ +� �   (37) 

and the matrix Λ  is expressed via the stabilizing solution of 
filtering algebraic Riccati equation (34). Then controller (11) 
is the state-estimating one. 

Proof. Substituting (36) to (35) and applying Lemma 8 from 
Appendix, we obtain 

2 c 1 2 2 c c( ) ( )
( ) ,0 0n n

A B C M C M A B
E z I I

+ + − Λ + Λ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∼    

i.e. the controller is the state-estimating one. 

After designing the optimal state estimator, let us construct 
optimal estimate-feedback loop. By the state-estimating 
property of the controller ,K  the copy of its internal state 

 coincides with the one-step predictor 0H l 0X  of the 
sequence  0 :X

0 0 0
1ˆ ( | ), .Y

k k k kh x x k−≡ −∞ < < +∞E� F   (38) 

Then the sequence l
0

X  defined by (38) and the sequence 
of the one-step predictors lX  defined by (24) are governed 
by the equations 

0
1 2 1 2

0 0
1 2 1 c

ˆ ˆ ˆ
,

ˆ ˆ( ( ))
k k k k k

k k

x Ax B M x B u y

x A B M C x y
+

+

⎫= + + + Λ ⎪
⎬

= + + + Λ ⎪⎭

�

�k

k

  (39) 

where 
0

2 2ˆ ˆk k ky y C x M x= − −�   (40) 

is the zero-mean Gaussian white noise with the covariance 
matrix Θ  defined by (34), the matrices 1M  and 2M  are 
given by (37). The one-step predictor of the output Z  by the 
measurement Y  is given by 

2
1

ˆ
ˆ ( | ) .kY
k k k

k

C x
z z

u−
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E� F    

The covariance matrix of the corresponding prediction error 
ˆk k kz z z−� �  is 
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T
T 2 2 0( )

0 0k k
C SCz z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E � � ,

⎞
⎟
⎟
⎠

k

   

where  is the stabilizing solution of filtering Riccati 
equation (34), and also does not depend on the controller 
matrices. It follows that problem (22) reduces to the state-
feedback LQ problem of minimizing the LQ-cost 

S

2

2

T T
2 2T

T T
2 2

0 0

ˆ ˆ0
ˆ ˆ( )

0

ˆ ˆ0 0
ˆ ˆ0 0 0

0 0

k k
LQ k k

k km

k k

k k

k m k

x xC C
J z z

u uI

x xC C
x x
u I u

⎛ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎜= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎝
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

E E

Ε

�

  (41) 

in the framework of dynamics (39) over stabilizing 
controllers  which is solved standardly [8]. K∈K

The optimal control law minimizing LQ-cost (41) is given by 
o 0

1 2ˆ ˆ ,k ku N x N x= +    

where the matrices 1N  and 2N  are expressed from the 
stabilizing solution T  of the control algebraic Riccati 
equation 

�

[ ]
2

T T T

T

1 T
1 2

,m

T A T A C C N N

B T B I

N N N B T A−

⎫= + − Π
⎪⎪Π + ⎬
⎪

= −Π ⎪⎭

�

�

� � � � � � � � �

� � � �

� � � � �

  (42) 

where 

2 1 2

2 1 c

2

0 ( )
.0 0 0

0 0

A B M B
A B A B M C
C C

⎡ ⎤
⎢ ⎥⎡ ⎤ + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

�� �

�

0

0

  (43) 

Remark 4. Equation (42) has a unique stabilizing positive 
definite solution T 2 2n nT T ×= ∈\� �  such that the matrix 
A B N+� � �  is stable [7]. 

Remark 5. Denote that for  and  oU U≡ 0V ≡

T
0 0o

LQ LQ 0 0
0 0

ˆ ˆ
min .

ˆ ˆ

x x
J J T

x x

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
E� �    

The following lemma defines the solution to Problems 1 
and 2. 

Lemma 4. Let the state-space realization matrices of 
stabilizing controller (11) be given by relations (36) of 
Lemma 3 together with 

c 1 2 ,C N N= +   (44) 

where the matrices 1N  and 2N  are expressed via the 
stabilizing solution of control algebraic Riccati equation (42). 
Then controller (11) is a solution to Problems 1 and 2. 

Proof. Let us substitute (44) and (40) to (39) and apply 
Lemma 8 from Appendix. Taking into account (36) and (44), 
we obtain 

2 c 1 2 2 c c

1 2 c

( ) ( )
( ) .0 0

A B C M C M A B
K z N N C

+ + − Λ + Λ⎡
=⎢ ⎥

⎤ ⎡ ⎤
⎢+⎣ ⎦ ⎣

∼ ⎥
⎦

  

Lemmas 2, 3, and 4 establish a system of matrix algebraic 
nonlinear equations for finding the state-space realization 
matrices of optimal controller (11) solving normalized 
anisotropy-based ∞H  problem (7) for -dimensional 
plant (1). This system includes the following cross-coupled 
equations: 

n

(2 2 )n n×  Riccati equation (14) for the worst-case 
shaping filter, (2 2 )n n×  Lyapunov equation (17), mean 
anisotropy equation (15), (  filtering Riccati 
equation (34), 

)n n×
(2 2 )n n×  control Riccati equation (42), 

expressions (36) and (44) for the controller matrices, as well 
as notational relations (12), (18), (19), (32), (37), and (43). 
Satisfying this equation system is sufficient for optimality of 
the obtained -dimensional controller. Denote that in the 
case of zero mean anisotropy level  the solution to 
Problem 1 reduces to the solution to normalized LQG 
problem considered in [4], [5], and the above equation 
system reduces to the well-known two independent 

n
0α =

( )n n×  
filtering and control Riccati equations that can be solved 
separately. But in general case  the full cross-coupled 
equation system is solved numerically by means of 
specifically designed homotopy-based algorithm (see, for 
example, [9]) with the normalized LQG controller state-
space realization matrices as an initial point. 

0α >

2. Controller order reduction by anisotropic 
balanced truncation 

2.1 Anisotropic characteristic values and anisotropic 
balanced coordinates 

To introduce a new set of invariants for the anisotropic 
optimal closed-loop system, let us consider filtering and 
control algebraic Riccati equations (34) and (42) with the 
respective stabilizing solutions  and  S .T�

Define the block partitioning 

11 12
T
12 22

, ,n n
ij

T T
T T

T T
×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

\�   (45) 

of the stabilizing solution of control Riccati equation (42). 
Taking into account partitioning (45) and notation (43), 
equation (42) can be rewritten as 

2

T T T
11 11 2 2 1 1

T T T
12 11 2 1 12 2 1 2 c 1 2

T
22 2 1 2 c 22 2 1 2 c

T T
2 1 11 2 1 2 2

T
2 1 12 2 1 2 c

T T
2 1 2 c 12 2 1

T
2 11 2

1 T
1 2 11

2

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

m

T A T A C C N N

T A T B M A T A B M B C N N

T A B M B C T A B M B C

B M T B M N N

B M T A B M B C

A B M B C T B M

B T B I

N B T A

N

−

= + − Π

= + + + − Π

= + + + +

+ − Π

+ + +

+ + +

Π +

−Π

�

�

� 1 T
2 11 2 1 12 2 1 2 c( ( ))B T B M T A B M B C−

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪−Π + + + ⎭

  (46) 

with the matrix 1M  expressed by (37) through the stabilizing 
solution R  of algebraic Riccati equation (14). 

Remark 6. It has been noted in [10] that if the state-space 
realization matrices of stabilizing controller (11) are given by 
relations (36) of Lemma 3 together with 

2

c 1 2
T 1 T
2 11 12 2 2 11 12 2 1( ( ) ) ( )( ),m

C N N

B T T B I B T T A B M−

= +

= − + + + +
  (47) 
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where the matrices  satisfy the first and 
second equations in system (46), then controller (11) is a 
solution to Problems 1 and 2. 

11 12,
n nT T ×∈\

In terms of block partitioning (45), for  and oU U≡ 0V ≡  we 
have 
o T T 0 0 T T 0 T

0 11 0 0 12 0 0 12 0 0 22 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( )LQ
0 ).J E x T x x T x x T x x T x= + + +   

Since actually in the system closed by the state-estimating 
optimal controller 0

0 0ˆ ˆ ,x x≡  the above expression gives 

T
0 0 LQ

T T
2 1 2 2 1 2

ˆ ˆ( ) min

ˆmin ( ( ) ( ) ),k

x Tx J

ˆkx C N N C N N x

=

= + + + +

E

E
  (48) 

where 
T

11 12 12 22.T T T T T+ + +�   (49) 

From (46), (47) and (49) it follows that the matrix T 0T T= >  
is the stabilizing solution of the following control Riccati 
equation 

2

T T
2 1 2 1 2 2

T
2 2

1 T
2 2 1

( ) ( )

.

( )

m

T A B M T A B M C C N N

B TB I

N B T A B M−

⎫= + + + − Π
⎪⎪Π + ⎬
⎪

−Π + ⎪⎭

�

�

T

  (50) 

Since the matrix 2 1A B M+  is stable, equation (50) has a 
unique stabilizing solution [7]. 

Recall now that the stabilizing solution  of the 
filtering algebraic Riccati equation 

T 0S S= >

T T
2 11 2 11 2 11 2

T
2 21 2 21 22

T 1
2 11 2 21 2 12

( ) ( )

( ) ( )

(( ) ( ) )

S A B L S A B L B B

C L S C L

A B L S C L B −

⎫= + + + Σ − ΛΘΛ
⎪⎪Θ + + + Σ ⎬
⎪Λ + + + Σ Θ ⎪⎭

�

�

T

  (51) 

is the covariance matrix of the prediction error ˆ :k k kx x x= −�  

Tˆ ˆ(( )( ) ).k k k kS x x x x= − −E   (52) 

Now let us introduce a new set of invariants for the 
anisotropic optimal closed-loop system that will play a 
central role in reducing the order of the normalized 
anisotropic controller. 

Theorem 5. Let the realization 2 2( , , )A B C  of plant (1) be 

minimal and let  and  be the stabilizing 
solutions of control and filtering algebraic Riccati 
equations (50) and (51), respectively. Then the eigenvalues 
of the matrix  are similarity invariants. Further, these 
eigenvalues are real and strictly positive. Let 

T 0T T= > T 0S S= >

TS

2 2 2
1 2 0nφ φ φ >"   

denote the  eigenvalues of the matrix  arranged in 
decreasing order, then there exists a similarity 
transformation 

n TS

1 1
2 2 2 2( , , ) ( , , )A B C Q AQ Q B C Q− −→   (53) 

with the matrix Q  nonsingular that transforms both T  and 
 to the form S

1 T T ,Q TQ Q SQ− − = = Φ   (54) 

where 

1

2

0 0
0 0

.

0 0 n

φ⎡ ⎤
⎢ ⎥φ⎢ ⎥Φ
⎢ ⎥
⎢ ⎥φ⎣ ⎦

"
"

�
# # % #

"

  (55) 

Proof. Let us consider a nonsingular state transformation 

, , n n
k k k kx Qx h Qh Q .×= = ∈�� \   (56) 

Substituting (56) to plant and controller state-space 
equations (1), (11), one can verify the correctness of (53). 
Further substitution of the realization  to 
equations (14), (17), (15), (50), and (51), as well as to 
expressions (36) and (44) for the controller matrices and 
notational relations (12), (18), (19), (32), (37), and (43) 
shows that under transformation (56) 

1 1
2( , ,Q AQ Q B C Q− − )

1 T

T

,

,

T T Q TQ

S S Q SQ

− −→

→

� �
� �

   

that is 

1 .TS TS Q TSQ−→ =��    

Since TS  and  are similar matrices, the eigenvalues 
of the matrix  are similarity invariants. The existence of a 
similarity transformation resulting in equality (54) follows 
from the positive definiteness of T  and  (see 
Corollary 8.3.3 in [11]), which also implies that the 
eigenvalues of the matrix  are real and strictly positive. 

1Q TSQ−

TS

S

TS

Definition 1. The real positive values 

1 2 0nφ φ φ" >   (57) 

defined in Theorem 5 are called anisotropic characteristic 
values. 

Definition 2. When the stabilizing solutions T  and  of 
respective control and filtering Riccati equations (50) and 
(51) are in form (54), (55), the system is said to be in 
anisotropic balanced coordinates, and the realization 

S

1 1
2 2 2 2( , , ) ( , , )A B C Q AQ Q B C Q− −� �� �    

is called anisotropic balanced realization. 

Writing control and filtering algebraic Riccati equations (50) 
and (51) in the anisotropic balanced state-space 
representation 2 2( , , )A B C� ��  yields, respectively, 

2

T T
2 1 2 1 2 2

T
2 2

1 T
2 2 1

( ) ( )

,

( )

m

TA B M A B M C C N N

B B I

N B A B M−

⎫Φ = + Φ + + − Π
⎪⎪Π Φ + ⎬
⎪

−Π Φ + ⎪⎭

� � � �� � � � � � �

� � ��
�� � � � ��

  (58) 

T T
2 11 2 11 2 11 2

T
2 21 2 21 22

T 1
2 11 2 21 2 12

( ) ( )

( ) ( )

(( ) ( ) )

A B L A B L B B

C L C L

A B L C L B −

⎫Φ = + Φ + + Σ − ΛΘΛT
⎪⎪Θ + Φ + + Σ ⎬
⎪Λ + Φ + + Σ Θ ⎪⎭

� � � �� � � � � �

� � �� ��
� � � �� � � ��

�

.

  (59) 

with 

1 1 11 11 21 21, ,M M Q L L Q L L Q� � �� � �   (60) 

The matrix Φ  defined by (55) is a unique positive definite 
stabilizing solution to both of these algebraic Riccati 
equations, and due to this uniqueness all the relevant 
information related to the anisotropic characteristic values 
and the anisotropic balanced realization are concentrated in 
these two Riccati equations. 

12AT&P journal  PLUS2 2009

LINEAR AND NON-LINEAR CONTROL SYSTEM DESIGN



Remark 7. It must be understood that the anisotropic 
characteristic values just as the system anisotropic norm are 
functions of the external disturbance mean anisotropy level 

 Strictly speaking, we should use the notation 0.α ( )iφ α  
and  but for the sake of simplicity we apply notations 

 and  
( ),Φ α

iφ .Φ

Let  and  be the respective stabilizing 
solutions to dual control and filtering algebraic Riccati 
equations for the discrete-time LQG problem 

T
2 2 0T T= > T

2 2 0S S= >

2

T T T T 1 T
2 2 2 2 2 2 2 2 2 2( )mT A T A C C A T B B T B I B TA−= + − + ,

T .

  (61) 

2

T T T T 1
2 2 2 2 2 2 2 2 2 2 2( )mS AS A B B AS C C S C I C S A−= + − +   (62) 

Then one can define the LQG characteristic values for the 
discrete-time case similarly to [4] as 

1 2
2

2 2

0,

{ }, 1,
n

i i T S i n

ψ ψ ψ >

ψ = λ =

"

.
  (63) 

The following theorem establishes some properties of the 
anisotropic characteristic values. 

Theorem 6. Let the realization 2 2( , , )A B C  of plant (1) be 
minimal, and let the LQG characteristic values for this 
realization be defined by (63). For anisotropic characteristic 
values (57), the following statements hold true: 

(1)  and  iff  iφ ψi iiφ = ψ 0;α =

(2) each anisotropic characteristic value iφ  is a 
monotonically increasing function of the parameter ;α  

(3) if the anisotropic characteristic values  are different, 

then 

iφ

0;id
d
φ
α

 

(4) each anisotropic characteristic value  is a continuous 
function of the parameter  

iφ
.α

Proof. (1) Applying the results of [12], [13] to equations (50), 
(61) and (34), (62), we obtain that 

2T T      and        2 .S S

It follows that [11] 

1/ 2 1/ 2 1/ 2 1/ 2
2

1/ 2 1/ 2 1/ 2 1/ 2
2 2 2 2 2

,

,

T ST T S T

S TS S T S
   

and 

2 2{ } { } { },i i iTS TS T Sλ λ λ 2

i

   

which implies  Equality is attained with .iφ ψ 0α =  since 
in this case  and  that completes the proof of 
the first assertion. 

2T T= 2S S=

(2) It is known from [14] that the anisotropic norm of a 
system is a monotonically increasing differentiable function 
of the parameter  It means that  always 
implies 

.α 2 1 0α α

2 1
2 2( , ( )) ( , ( ))l lP K P K

α α
α αF F    

with obvious notations. From the other hand, the anisotropic 
controller  minimizes 1( )K α 1α -anisotropic norm of the 
closed-loop system that yields 

1 1
2 1( , ( )) ( , ( )) .l lP K P K

α α
α αF F    

The resulting chain of inequalities 

2 1
2 2( , ( )) ( , ( )) ( , ( ))l l lP K P K P K

1
1α α α

α αF F F α    

means that the anisotropic norm of the closed-loop system 
increases monotonically as a function of the parameter .α  
Applying again the results of [12], [13] to equations (50) and 
(51) obtained for the different mean anisotropy levels 1α  
and 2 ,α  it can be shown that 

2( ) ( )T T 1α α      and     2 1( ) ( ).S Sα α    

Using the same argument as in the proof of the first 
assertion, this implies that 2( ) ( ).i i 1φ α φ α  In fact,  and  
are differentiable functions of  so we have 

T S
,α

0dT
dα

     and     0.dS
dα

   

(3) Since T  and  are differentiable functions of S ,α  hence 
 is also a differentiable function of  Since by definition 

 and by assumption  are different, then each 
anisotropic characteristic value  is a differentiable function 
of 

TS .α
2 { }i i TSφ = λ iφ

iφ

α  too. But from the second assertion, each iφ  is a 

monotonically increasing function of  Therefore, .α 0id
d
φ
α

 

holds for each .iφ  

(4) From the proof of the third assertion,  is a 
differentiable, hence, continuous function of 

TS
.α  It is well 

known (see e.g. [11]) that the eigenvalues of a matrix are 
continuous functions of the matrix elements that completes 
the proof. 

Denote that the transformation matrix  putting the closed-
loop system realization into the anisotropic balanced 
coordinates can be found in the following quite standard 
way (see, for example, [15]). Let us find an upper triangular 
nonsingular matrices  from the respective 
Cholesky factorizations of the stabilizing solution T  of 
control Riccati equation (50) 

Q

, n n×∈\T S

TT = T T    

and the stabilizing solution  of filtering Riccati 
equation (51) 

S

T .S = S S�   

Then, find the singular value decomposition of the matrix 
T T ,= ΦST U V    

where T ,I=UU  T .I=VV  Then the transformation matrix is 
given by 

T 1/ 2.Q −= ΦT V    

2.2 Reduced-order plant and controller 

Before proceeding to the controller order reduction, let us 
consider some motivation for the anisotropic balancing of 
Theorem 5 and summarize the essence of the results. First, 
the matrices T  and  are diagonal. Therefore, taking into 
account expressions (48) for minimum value of the LQ-cost 
and (52) for the covariance matrix of prediction error, one 

� S�
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could say that the similarity transformation  defined 
by (53) decouples the state components in both the control 
and filtering problems. Second, since T  and  are equal, 
this transformation also weights all of the state components 
equally between the control and the filtering problems. This 
weight or importance of the state component 

Q

� S�

iX�  in the 
normalized anisotropy-based stochastic  problem is the 
anisotropic characteristic value 

∞H
,iφ  since  is the filtering 

error covariance for the component 
iφ

iX�  and, at the same 
time, the cost induced by an initial condition aligned with 
.iX�  This fact carries over into the controller design problem, 

as the anisotropic optimal controller is the cascade of 
optimal estimator (35) and control gain (44). Thus, the 
anisotropic characteristic value iφ  specifies how much the 

state component iX�  participates in the closed-loop 
behaviour of the system in the following sense. If iφ  is large, 

then the component iX�  is difficult to filter (see (52) and 

(54)) and difficult to control (see (48) and (54)), hence, iX�  is 
an important state component that must be taken into 
consideration in the controller design. Vice versa, if the 
anisotropic characteristic value is small, then iX�  is easy to 

filter and easy to control, hence, the component iX�  is not of 
the great essence that can be discarded for designing a 
reduced-order controller. 

Let the state-space realization 2 2( , , )A B C� ��  be minimal with  
states and in anisotropic balanced coordinates with 
anisotropic characteristic values 

n

1 2 0.nφ φ φ >"    

That is,  is the stabilizing solution 
of control and filtering Riccati equations (58) and (59) 
associated with the realization 

1diag{ , , }n T SΦ = φ φ = = ��…

2 2( , , ).A B C� ��  Fix r n<  such 
that  and partition the matrix  accordingly into 1r r+φ > φ Φ

1

2

0
0
Φ⎡ ⎤

Φ = ⎢ ⎥Φ⎣ ⎦
  (64) 

with 

1 1 2 1diag{ , , }, diag{ , , }.r r+Φ = φ φ Φ = φ φ… n…   (65) 

Partition the matrices ,A�   and  conformably with the 
partitioning (64) as follows: 

2 ,B� 2C�

2111 12
2 2 21 22

2221 22
, ,

BA A
A B C C

BA A
⎡ ⎤ ⎡ ⎤

⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎣ ⎦⎣ ⎦

� � �� ��
� � � .C� �

.

   

Then the reduced-order realization with -dimensional state 
is  

r

11 21 21( , , )A B C� ��

Let c c c( ) ( , , )K z A B C= � ��  be the balanced realization of the 
normalized anisotropic controller for plant (1) as defined in 
Lemma 4. Partition the matrices c ,A�   and  
conformably with the partitioning (64) as follows: 

c ,B� cC�

c1c11 c12
c c c c

c2c21 c22
, ,

BA A
A B C C

BA A
⎡ ⎤ ⎡ ⎤

⎡= = =⎢ ⎥ ⎢ ⎥ ⎣
⎣ ⎦⎣ ⎦

� � �
� ��

� � � 1 c2 .C ⎤⎦
� �    

Then the reduced-order controller with -dimensional state 
is 

r

c11 c1

c1
( ) .

0r
A B

K z
C

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

� �
∼ �   (66) 

As it can be easily shown by substitution, the matrix 1Φ  
given by (65) is the stabilizing solution to the corresponding 
control and filtering Riccati equations 

2

T
1 11 21 11 1 11 21 11

T T
21 21 1 11 1
T

11 21 1 21

1 T
1 11 21 1 11 21 11

( ) (

,

( )

m

A B M A B M

C C N N

B B I

N B A B M−

⎫Φ = + Φ +
⎪

+ − Π ⎪
⎬

Π Φ + ⎪
⎪

−Π Φ + ⎭

� �� � � �

� � � � �

� � ��
�� � � � ��

)

.

.

   

T
1 11 21 11 1 11 21 11

T T
21 11 21 1 11 1

T
11 21 21 1 21 21 22

T 1
1 11 21 11 1 21 21 21 12 11

( ) ( )

,
( ) ( )

(( ) ( ) )

A B L A B L

B B

C L C L

A B L C L B −

⎫Φ = + Φ +
⎪

+ Σ − Λ Θ Λ ⎪
⎬

Θ + Φ + + Σ ⎪
⎪Λ + Φ + + Σ Θ ⎭

� �� � � �

� � �� �

� � �� ��
� � � �� � � ��

   

for the reduced-order realization  From this 
fact it immediately follows that the reduced-order controller 

 is the full-order normalized anisotropic optimal 
controller for the reduced-order plant  with the 

realization  

11 21 21( , , )A B C� ��

( )rK z
( )rP z

11 21 21( , , )A B C� ��

Of course, there are two important questions of stability and 
performance of the closed-loop system when reduced-order 
controller (66) is connected to full-order plant (1). 
Development of apriori conditions for closed-loop stability is 
now in progress. The lack of performance in terms of the 
anisotropic norm can be expressed as 

,rF F F
α α
= −   (67) 

where 

cl cl

cl cl

cl cl

0
( ) 00

0

e e
e r

e
r

r

A BA B
F z A BC

C C

⎡ ⎤
⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥−⎣ ⎦

∼   (68) 

is the error model, F is the closed-loop system defined 
by (12), and 

2 c1 2

cl cl c1 2 c11 c1

cl 2

c1

0
0

( ) 0 0 0 0
0 0

r r
r

r

A B C B
A B

0

B C A B
F z C C

C

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

∼   (69) 

is the closed-loop system with a reduced-order controller. 

The following theorem defines the value of performance 
error (67). 

Theorem 7. Let the full-order closed-loop system  be 
given by (12), and let the reduced-order closed-loop system 

 represented by (69) be stable. Then the anisotropic 
norm of the error model  with realization (68) is given 
by 

( )F z

( )rF z
( )eF z

1/ 2
1
T

1( ) 1 ,
tr( )e

e e e e e

mF z
q L P Lα

⎧ ⎫⎛ ⎞⎪ ⎪= −⎜ ⎟⎨ ⎬⎜ ⎟+ Σ⎪ ⎪⎝ ⎠⎩ ⎭
   

where 2[0, ),e eq F −
∞∈    and ,eL

T 0,e eΣ = Σ > T 0e eP P= >  
satisfy the equation system 
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1

T T T 1

T 1

T

( )
e e e e e e e e e e

e m e e e

e e e e e

R A R A q C C L L

I B R B

L B R A

−

−

⎫= + + Σ

,
⎪⎪Σ − ⎬
⎪

Σ ⎪⎭

�

�

  (70) 

1
T

1 lndet ,
2 tr( )

e

e e e e

m
L P L

⎧ ⎫Σ⎪ ⎪− =⎨ ⎬
+ Σ⎪ ⎪⎩ ⎭

α

.

  (71) 

T T( ) ( )e e e e e e e e e e eP A B L P A B L B B= + + + Σ   (72) 

At that, the solution  to equation 
system (70)–(72) is a unique one. 

T( , 0, )e e e eq R R P= >

Proof of this theorem immediately follows from Theorem 2 
in [1] applied to error model (68). 

3. Application example: longitudinal flight 
control 

As an application example, let us briefly consider the 
problem of longitudinal flight control aimed at wind 
disturbance attenuation for aircraft in landing approach 
along glidepath with prescribed relative slope angle in 
presence of coloured random noises by means of reduced-
order anisotropic controller. More detailed problem 
statement and aircraft model can be found in [16]. The 
obtained control law minimizes the influence of actuator and 
measurement noises, as well as wind disturbance on 
deviations of airspeed  and altitude  from prescribed 
values (controlled variables). Deviation of generalized 
elevators  and throttle lever  are considered as 
aircraft control. 

V∆ h∆

cy∆ϑ t∆δ

The anisotropic, LQG, and ∞H  controllers were designed 
for aircraft TU-154 in landing approach along glidepath with 
fixed relative slope angle  deg. Nonlinear 
equations describing an aircraft longitudinal motion 
(see [16]) were linearized in the trajectory point with 
airspeed  m/sec and altitude  m. The 
resulted standard plant model (1) has order  

0 2.7θ = −

0 71.375V = 0 600h =

6.n =

The full-order normalized anisotropic optimal controllers was 
found for two different prescribed levels of mean anisotropy 
of random disturbances  and  the 
suboptimal  controller was obtained for 

1 0.01α = 2 0.6;α =

∞H 2.6523.γ =  
Then, the closed-loop systems with anisotropic, LQG, and 

 controllers were put into the balanced coordinates via 
the respective nonsingular transformations. Anisotropic, 
LQG, and  characteristic values for this problems are 
given in descending order in Table 1. Denote that the 

∞H

∞H

∞H  
reduced-order controller does not provide stability of the 
closed-loop system for  The reduced anisotropic and 
LQG controllers retain the stable closed-loop up to 

5.r <
3.r =  

The results of computer simulation for systems closed by 
the reduced-order controllers are presented in Fig. 3 
through 9. The deterministic horizontal and vertical 
components of wind disturbance are presented by the 
model in the form of vortex ring considered in [16] (see 
Fig. 3). The worst-case random coloured noises are 
presented in Fig. 4 and 7. The transients and control signals 
in the closed-loop systems with various controllers are given 
in Fig. 5, 6, and 8, 9. Black-coloured curves in the plots 
correspond to the closed-loop system with anisotropic 
controllers, blue and red colours — to the systems closed by 
LQG and  controllers, respectively. ∞H

i  LQG 
 

∞H  
 

Anisotropic: 
 0.01α =

 
0.6α =  

1 2.5102 2.6369 6.5624 37.3321 
2 0.8492 0.8925 1.3688 7.1399 
3 0.5362 0.5611 0.7050 2.5277 
4 0.0879 0.0900 0.0905 0.0993 
5 0.0681 0.0693 0.0694 0.0712 
6 0.0119 0.012430 0.012432 0.0127 

Tab.1  LQG, ∞H , and anisotropic characteristic values 
 

Controller: LQG Anisotropic ∞H  

max V∆ , m/sec 9.625 11.11 12.56 

max h∆ , m 60.94 45.61 29.15 

max cy∆ϑ , deg 14.12 18.49 29.66 

max t∆δ , deg 4.407 4.605 3.683 

Tab.2  Comparison for reduced-order controllers, 
0.01α = , 5r =  

 
Controller: LQG Anisotropic 

max V∆ , m/sec 9.53 11.87 

max h∆ , m 60.79 46.84 

max cy∆ϑ , deg 16.85 21.91 

max t∆δ , deg 8.689 9.108 

Tab.3  Comparison for reduced-order controllers, 
0.01α = , 3r =  

 
Controller: LQG Anisotropic ∞H  

max V∆ , m/sec 9.652 11.69 12.84 

max h∆ , m 63.39 40.96 29.64 

max cy∆ϑ , deg 14.5 23.1 31.13 

max t∆δ , deg 5.089 4.636 3.832 

Tab.4  Comparison for reduced-order controllers, 
0.6α = , 5r =  

 
Controller: LQG Anisotropic 

max V∆ , m/sec 9.509 12.74 

max h∆ , m 56.73 38.39 

max cy∆ϑ , deg 16.01 24.73 

max t∆δ , deg 8.227 6.981 

Tab.5  Comparison for reduced-order controllers, 
0.01α = , 5r =  

The comparison results in numbers are brought together in 
Tables 2 through 5. The comparison shows that the 
maximum absolute deviation of airspeed  is lesser for 
system with the LQG controllers, whereas the maximum 
absolute deviation of the prescribed altitude  is lesser for 
system closed by the 

V∆

h∆
∞H  controller with 5.r =  The 

maximum absolute value of the control signal  for cy∆ϑ 5r =  
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was shown by the  controller, and for ∞H 3r =  by the 
anisotropic one, whereas the minimum absolute amplitude 
was demonstrated by LQG controller in both cases. As for 
the maximum absolute value of  for  it was given 
by the anisotropic controller, and for  by the LQG one. 

,t∆δ 5r =
3r =

 
Fig.3 Horizontal and vertical components xW  and  

of wind profile 
yW

 
Fig.4 Worst-case random disturbance,  0.01α =

 
Fig.5 Controlled variables , , and control V∆ h∆ cy∆ϑ , 

 for ,  t∆δ 0.01α = 5r =

 
Fig.6 Controlled variables , , and control V∆ h∆ cy∆ϑ , 

t∆δ  for 0.01α = , 3r =  

 
Fig.7 Worst-case random disturbance,  0.6α =

 
Fig.8 Controlled variables , , and control V∆ h∆ cy∆ϑ , 

t∆δ  for 0.6α = , 5r =  

From Fig. 5 and 8 it can be seen that the control signals 
generated by the anisotropic controller are more smooth 
than that of the ∞H  controller, whereas the latter, owing to 
its conservatism, strives to counteract each element of the 
noise random sequence, interpreting it as a deterministic 
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signal. In practice, such the control would not likely be 
physically realizable or would require using of additional 
smoothing filters. 

 
Fig.9 Controlled variables , , and control V∆ h∆ cy∆ϑ , 

 for ,  t∆δ 0.6α = 3r =

Conclusion 

This paper presents the truncation technique for reducing 
order of normalized anisotropic optimal closed-loop system 
aimed at reduced-order controller design. Truncation is 
carried out for the closed-loop realization in anisotropic 
balanced coordinates, when the product of respective 
filtering and control Riccati equation solutions is a diagonal 
matrix with the squares of anisotropic characteristic values 
situated in descending order on its main diagonal. In 
anisotropic balanced coordinates, small characteristic 
values correspond to the states which are easy to filter and 
control in a sense of anisotropic norm. The part of the plant 
or controller corresponding to smaller anisotropic 
characteristic values is truncated to obtain a reduced-order 
plant or controller. It was shown that the reduced-order 
controller is the full-order optimal one for the reduced-order 
plant. Development of apriori stability conditions for the 
closed-loop system consisting of full-order plant and 
reduced-order controller is now in progress. As an 
application example, we consider the longitudinal aircraft 
control problem aimed at random disturbance attenuation by 
means of the reduced-order anisotropic controller. 
Simulation for aircraft in landing approach along glidepath 
with fixed relative slope angle shows that the reduced-order 
anisotropic controller retains the inherent properties of the 
full-order one. Comparison between reduced-order 
anisotropic, LQG, and  controllers in presence of the 
worst-case random and deterministic disturbances 
demonstrates the main advantages of the anisotropic 
controller, namely, smoothness and physical realizability of 
control signals together with sufficiently good attenuation of 
random and deterministic disturbances. In this problem, the 
reduced-order anisotropic controllers also show lesser order 
preserving closed-loop system stability than the reduced-
order  controller. 
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Subtracting 1k+ξ  from 1kx +  in (A.2), we obtain Appendix: An equivalence lemma 

1 1 1( )k k k kx A x+ +− ξ = − ξ    
Lemma 8. Let  Then 1 2, .n nA A ×∈\

that yields k kx = ξ  k∀ ∈]  for any coinciding initial condition 
,x−∞ −∞= ξ  i.e. the second and third equations in (A.2) give 

the state-space realization at the right-hand side of (A.1). 
1 2 1

2
2

1 2
1 2

0 ,
A A A B A B

A B C C D
C C D

⎡ ⎤−
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ +⎣ ⎦⎢ ⎥

⎣ ⎦

∼   (A.1) 

i.e. these realizations result in the same state-space input-
output operator. 

Michael Tchaikovsky, Ph.D. (Candidate of Sciences) 
Proof. Let   and Y  be the internal state, input, 
and output of the system with realization at the left-hand 
side of (A.1). All these signals are related by the equations 

( , ),X Ξ ,U
Institute of Control Sciences, Russian Academy of Sciences 
Laboratory 1 “Dynamics of control systems” 
65 Profsoyuznaya str. 
117997, Moscow, Russia 

1 1 2 1

1 2

1 2

0 .
k k

k k

k k

x A A A B x
A B

y C C D u

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
ξ = ξ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (A.2) Tel.: +79151399341 
E-mail mmtchaikovsky@hotmail.com 
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Probabilistically Tuned LQ Control 
for Mechatronic Applications 

Květoslav Belda 

Abstract 
Mechatronic applications are integral part of production machines and industrial 
robots. The key task is a design of their suitable control, which should ensure safe 
control actions in spite of sudden changes of working conditions. The paper presents 
specific probabilistic interpretation of well-known Linear Quadratic control.This inter-
pretation employs complex information on system behavior and gives physical me-
aning for fine-tuning of control parameters. The principles of fully probabilistic design 
with emphasis on on-line tuning are demonstrated on physical model of gearbox 
mechatronic system representing flexible mechanism occurring in rolling machines. 

Keywords: adaptive control, state-space realization, mechatronic applications 

 
Introduction 

Mechatronic systems comprise elemental part of production 
machines and industrial robots. They consist of beams, 
wheels, joints and drives with power electronics. The sys-
tems have to be precisely controlled to provide safe motion 
and elimination of undesired vibrations causing drive wear 
and damage. 

In this paper, the gearbox mechatronic system is used 
as a representative system. It represents flexible mecha-
nism (Fig.1) occurring in rolling mill machines [3] and also 
in geared robot arms [8] of serial industrial robots - manipu-
lators. Considered system consists of electric drive, solid 
wheels and elastic belts or elastic shafts respectively. 

The aim is to tune suitably designed control, which should 
adapt itself for sudden changes of working conditions (load 
changes, external signal disturbances etc.) making control 
process stochastic. 

The most general formulation of the control design is based 
on the minimization of expected value of a suitably chosen 
loss function. The loss function is defined as a function 
of system inputs, outputs and desired behavior with respect 
to feedback control strategies. The control strategy has 
to be chosen in correspondence to the purpose of control. 
One of well known powerful strategy is LQ (Linear Quadra-
tic) control employing linear system model and quadratic 
criterion [2]. Its more general probabilistic interpretation [5] 
with emphasis on on-line parameter fine-tuning is presented 
here. The on-line tuning protects drives of controlled system 
from sharp actions induced by unpredicted change of wor-
king conditions. 

elasticelastic
elementelement 22

solidsolid
wheel wheel 33

solidsolid
wheel wheel 11

solidsolid
wheel wheel 22

elasticelastic
elementelement 11

drivedrive
MMkk elasticelastic

elementelement 22

solidsolid
wheel wheel 33
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wheel wheel 11

solidsolid
wheel wheel 22

elasticelastic
elementelement 11

drivedrive
MMkk

 
Fig.1 Scheme of gearbox mechatronic system 
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Fig.2 Block diagram of the closed control loop of pro-

babilistic controller and controlled system 

The proposed approach considers more complex informa-
tion on controlled system behavior using probabilistic des-
cription of whole closed-loop, block diagram of which 
is shown in Fig.2. The diagram represents the structure 
of the closed-loop of considered mechatronic system. 

In fully probabilistic approach, all available aspects 
of the closed-loop including expected and desired inputs 
and outputs, are defined as probability density functions. 
Consequently, the probabilistic interpretation may use more 
of available information contrary to standard design, which 
may have an insufficient number of representative parame-
ters or interpretations for the information available. 

In mechatronic systems (e.g. manipulators - robots [7], [8], 
the fully probabilistic approach offers to express stochastic 
inaccuracies of the mechanical elements (e.g. backlashes, 
friction, wear, elasticity etc.), actuators generating control 
actions and inaccuracies of measurement sensors and 
appropriate wiring (signal disturbances). Mechatronic sys-
tems represent a chain of different elements, which cause 
different inaccuracies, combination of which causes sto-
chastic system behavior. 

This paper is focused on probabilistic interpretation LQ 
control design as a promising approach regarding its tuning 
and application to mentioned mechatronic systems. It starts 
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section, where the basic principles of fully probabilistic con-
trol design is briefly outlined. The following sections deal 
with definition of suitable models describing controlled sys-
tems and implementation issues. Then, the princip of on-line 
fully probabilistic control tuning is explained. At the end, 
proposed approach is demonstrated on physical model 
of flexible gearbox mechanism. 

Probabilistic design principles 

The fully probabilistic control design determines admissible 
control strategy, which forces the joint distribution of all 
closed-loop variables as close as possible to the desired 
(ideal) distribution.linebreak To measure level of proximity 
of these distributions, the Kullback-Leibler divergence 
(KL-divergence) )||( ffD I  is used as follows [4], [5]. 

∫=
⎭
⎬
⎫

⎩
⎨
⎧

≡ dX
Xf
XfXf

Xf
XfEffD

II

I

)(
)(ln)(

)(
)(ln)||(  (1) 

where the pair of probability density functions (pdfs) f  and 
fI  is considered to be acting on their domains i.e. on a set 

of all values *X . 

From control point of view, the KL-divergence represents 
the loss function or optimality criterion. By its minimization, 
the optimal control law is obtained. The following lines outli-
ne the mini-linebreak mization process. Due to necessity 
to consider time for computation of control law, the discrete 
design within finite time interval is considered. 

General assumptions 

Let us start from explanation of pair of pdfs mentioned in (1), 
which are evaluated within some specific discrete-time 
interval. In control design, they represent joint pdfs of real 
and ideal closed-loop behavior: 

  joint pdf of the real closed-loop behavior 

),,,,()( 1 kkNkNkN uuffXf xx L−++≡=  (2) 

  joint pdf of the ideal closed-loop behavior 

),,,,()( 1 kkNkNkN uuffXf xx L−++≡=  (3) 

These pdfs are considered to be defined for values in given 
time and their parameters to be valid within specific finite 
horizon N  called control horizon. The label N  represents 
the number of discrete time instants j  from instant k  within 
the horizon; i.e. Nkkj ++= ,,1L ; )( ⋅u  are control actions. 

Due to practical consequences, the pdfs are based on the 
assumption that succeeding system state jx  arises from 

previous system state 1−jx  and system input 1−ju  only. Thus, 

jx  is independent of past system states and system inputs. 
This assumption is formulated as follows: 

),|(),,,,|( 110011 −−−− = jjjjjj ufuuf xxxxx L  (4) 

)|(),,,,|( 001 jjjjj ufuuuf xxx =− L  (5) 

),|(),,,,|( 110011 −−−− = jjj
I

jjj
I ufuuf xxxxx L  (6) 

)|(),,,,|( 001 jj
I

jjj
I ufuuuf xxx =− L  (7) 

where pdf labeled by superscript I  denote user require-
ments, i.e. user ideals. 

Thus, the pdfs (2) and (3), or pdfs (4) to (7) respectively, 
describe real and ideal behavior of individual parts of given 
closed-loop i.e. behavior of the system and controller; 
e.g. in instant 1+= kj , the real and ideal system behavior 
is modeled by pdfs ),|( 1 kkk uf xx +  and ),|( 1 kkk

I uf xx + ; 
and real and ideal controller behavior is modeled by pdfs 

)|( kkuf x  and )|( kk
I uf x , respectively. 

The suitable specification of individual pdfs will be described 
in implementation section. 

Task specification 

The task of fully probabilistic control design is to determine 
optimal control law - optimal pdf )|( kk

O uf x  of the pdf 
)|( kkuf x : 

Nk
kjjj

N
I

N
Nk
kjjj
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xuf
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+=−−
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111

111
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 (8) 

As indicated in (8), the task of design consists in minimiza-
tion of KL-divergence. The following subsection outlines 
the minimization procedure, which leads to the optimal pdf 
of controller and the optimal control law respectively. 

Outline of minimization procedure 

This subsection presents a brief outline of minimization 
procedure only, detail derivation is described in [5]. Optimal 
pdf of the controller can be obtained using (8). 

From control theory point of view, considering the assum-
ptions from subsection of general asumptions, the equation 
(8) can be interpreted as expression of specific dynamic 
programming procedure [1]. 
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where 
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 is thj  partial loss. The expre-

ssion (9) leads to the following pdf of optimal control: 
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where ),( kku xδ  and )( kxγ  are suitably formed artificial qu-
antities defined as follows 
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Probabilistic model 

As formerly mentioned, the system behavior can be descri-
bed by probability density function (pdf). If the system beha-
vior is normally distributed, then its pdf denoted by )(yf  is 
defined as follows 

y

y

y

yy

r
y

e
r

yfrN
2

)(

2
1)(),(

2µ

π
µ

−
−

==  (13) 

where yµ  represents mean value, i.e. expected value 

of system output }){( yEy y =µ , yy r=2σ  denotes a disper-

sion (variance; }){( 2
yy yEr µ−= ). In control design, these 

parameters are considered to be continuous in values and 
discrete in time. Their continuity follows from the system 
character. The discreteness in time is given by discrete 
realization of control, which naturally respects the time for its 
computation. Internal structure of parameters mentioned 
above can be specified in more detail either as ARX model 
or as state-space model. The ARX model [6] with normally 
distributed noise is defined as: 
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yky
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where n  is an order and 
kye  is a model noise, which has 

a dispersion yr . The state-space model is defined as: 

),0(~,1 RBAxx xx

x

Neeu
kkkkk ++=+ 43421

µ

 (15) 

)~,0(~~,~
ykykykk rNeey += Cx  (16) 

Equations (15) and (16) represent general state-space nota-
tion, in which the state kx  may belinebreak available or not; 
e.g. it has not a physical interpretation and for the control 
purposes it has to be estimated. 

To avoid mentioned drawback, it is possible to use so-called 
pseudo state-space model [2], which is a direct reinterpreta-
tion of ARX model (14). Such reinterpretation means state-
space model with non-minimal state, which contains only 
delayed values of inputs and outputs. An internal structure 
of the reinterpretation is de-fined as follows: 
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Relation of the pseudo-state space model to ARX model is 
obvious from the following corollary: 

{
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, (20) 

Models (14); or (15) and (16); or (15) to (19) are used 
as models for implementation of fully probabilistic control 
design described below. 

Implementation of control 

Let us start from general expression (10) representing opti-
mal pdf (section on principles). To compute real parameters 
of this pdf, individual pdfs from assumptions (4), (6) and (7) 
have to be defined. These emph{pdf}s represent both real 
and ideal behavior of closed-loop (Fig.2). Assuming model 
given by (15) to (19), i.e. finite memory and known parame-
ters of appropriate distributions, then emph pdfs are defined 
as follows: 

  pdf of the real controlled system output 
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  pdf of the ideal controlled system output 
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where ideal y
I µ is the desired output value ;1+kw  

  pdf of the ideal controlled system input 
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where u
Iµ  is assumed to be the previous action 1−ku  

and the dispersion u
Ir  can be viewed as a tuning parameter 

of the controller. For pdfs defined like that, the computation 
of pdf (10) leads to the following expressions: 
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where k
Ou  is the optimal control law. 

On-line probabilistic tuning 

This section focuses on tuning of control parameters. 
In general, the parameters of the controllers determine 
the character of the control actions responding on changes 
of working conditions and user requirements. Usually, 
the parameters - their values - are selected according 
to user experiences or according to some simple empirical 
rule. The values are constant for whole control process 
or sometimes they are discontinuously reset. It is not suitab-
le for dynamic systems within changeable environment. 

Presented probabilistic formulation of LQ control is suitable 
for on-line tuning or fine-tuning. Partly, it can use local con-
secutively-changed models (model adaptation) and partly, 
can use different slightly-changed control parameters (con-
troller adaptation). The former can be characterized as so-
me change of system properties i.e. model parameters and 
the latter can represent the quality of the description i.e. 
quality of the model parameters. Thus, good reliable model 
gives more accurate and brisk controller and vice versa. 
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The both mentioned ways of adaptation can be covered 
in the control law (25), which represents standard form 
of LQ control. The gains kk , wjk  and uk contain parameters 
of the system model (e.g. model (20)) and simultaneously 
control parameters, which are presented by dispersions u

I r  
and y

I r . These dispersions are very important, because 

they are determining factors for the gains kk , wjk  and uk  
in (24) and (25). 

In comparison with non-probabilistic LQ control design, 
reciprocal values of the dispersions represent input 
and output penalization factors ( u

I

u rq = , y

I

y rq = ), which 
together adjust individual terms in quadratic loss-function. 

As was already mentioned, their choice is based on expe-
rience or on experimental tuning. In fully probabilistic control 
design, interpretation of these quantities is more straightfor-
ward. The equations (22) and (23) imply that u

I r  and y

I r  
represent noise dispersions for ideal distribution of the sys-
tem and controller. 

The algorithm proposed in this paper is intended for sys-
tems (e.g. mechatronic one), where the mathematical model 
together with the noise can change substantially, possibly 
due to additional interference, that may occur randomly 
during the control. Inadequate choice of input and output 
penalizations or u

I r  with y

I r  respectively, can cause serious 
device failures, e.g. system actuators (drives) might not be 
able to achieve designed control or may be damaged 
by them. 

Unexpected system noise increase may force the controller 
to generate inputs out of any reasonable physical range 
of the device. In such undesired cases, it would usually be 
acceptable to decrease control quality in order to achieve 
at least some reasonable control actions. Probabilistic con-
trol interpretation of penalization factors as dispersions can 
achieve indicated strategy via on-line control tuning. 

The tuning is based on the idea of changing of dispersion 
y

I r  so that its amplitude is propor-tional to the output disper-

sion yr  or practically to its estimate 

T

iyiyiy eer =ˆ T

iyiiyi yy )ˆ()ˆ( µµ −−=  (26) 

calculated from current data iy  and model. The effect is that 
during periods of increased output noise, output ideal is set 
to be less strict. It causes the output to be tracked less clo-
sely. This allows the input to stay in its reasonable constra-
ints. 

However, current output dispersionlinebreak can change 
very quickly causing big changes in dispersion y

I r . In order 

to avoid this, 
iyr̂  has to be filtrated. As a suitable filter, 

exponential forgetting is used. It can be defined as follows: 

11
ˆ)1(~

yy rr λ−=  (27) 

kirrr
iyiyiy ,,2,ˆ)1(~~

1
L=−+=

−
λλ  (28) 

where λ  is a forgetting factor influencing quickness of we-
ight decrease of individual contributions 

iyr̂ . The equations 
(27) and (28) can form one general expression: 

iy

k

i

ik

ky rr ˆ)1(~
1
∑
=

−−= λλ  (29) 
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Fig.3 Trend of contribution of ykr̂  to 

iyr
~  

In order to find reasonable value for parameter λ  the sui-
table number of time instants l  has to be defined in corres-
pondence to the characterlinebreak of control process 
During these l  time instants, the contribution of ykr̂  to yir̂  
drops to the given level. 

Standard choice is to select number of instants (denoted 
by 2/1l ) that cause dropping the contribution of ykr̂  to one 

half of the original value. It implies that 2/1l  satisfies 
the equation: 

kyky rr ˆ)1(
2
1ˆ)1(2/1 λλλ −=−l  (30) 

See Fig.3 for illustration of this effect. Producing `half-time' 
2/1l  is user-friendly way to find a suitable value for constant 

λ , because user can easily imagine what is the time nee-
ded for a contribution of ykr̂  to drop to one half. Consequen-

tly, suitable λ  can be found like this: 

2/1/1

2
1

l

⎟
⎠

⎞
⎜
⎝

⎛=λ  (31) 

where 2/1l  is provided by the user. 

On-line tuned LQ control 
of gearbox mechatronic system 

This section demonstrates the presented fully probabilistic 
interpretation of LQ control design including the on-line 
parameter tuning. The aim is to illustrate improvements 
of control process that follow from consequences of previ-
ous section. 

As was mentioned in introduction, the gearbox system (see 
Fig.4(e)), consists of three wheels, which are mutually con-
nected by two elastic belts. Position of the wheel 1 is con-
trolled by servo-motor, and the position of the wheel 3 
is measured. 

From control design point of view, the mechatronic system 
is modelled by ARX model (14) of order 6=n , which 
is determined by the fackt, that each solid wheel represents 
approximatelly 2 orders. Real control of the system is provi-
ded by adaptive LQ controller. 
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Fig.4 Real experiment: (a), (b) and (c) comparison of standard LQ control 1=yq , 100=yq  and 200=yq  respectively; 
(d)  control  generated  by  probabilistic  design  with  tuning  (desired  and  real  system  output )(tw  and )(ty ; 
input )(tu ; penalization )(tqy ; (e) gearbox system 
 

During control process, the discrepancy between model 
estimated and the real system occurs. This causes sharp 
changes of control actions, which do not follow from desired 
profile of system output but just from temporal discrepancy 
of estimated model from reality. In ideal conditions, this 
undesirable state damp out shortly. 

However, in real conditions, it can cause unpredictable 
behaviour damaging drives and even it can damage other 
structural elements of the system. This phenomenon is 
being suppressed by tuning algorithm proposed in this pa-
per (see Fig.4(d)). 

Fig.4 specifically, demonstrates four runs of real control 
process. The individual sub-figures (a), (b), and (c) show 
control runs with differentlinebreak but constant output 
penalization ( yq ). In all caseslinebreak of constant yq , 
the input magnitude startslinebreak to change rapidly due to 
sudden disturbance. The process eventually stabilizes, 
however, in case (c) the controller have not stabilized at all. 

With adaptive tuning proposed in this paper (sub-figure (d) 
of Fig.4) the changes in input are reasonably small, moreo-
ver, the output matches desired value much better. 
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Conclusion 

The paper outlines the principles and practical aspects 
of fully probabilistic interpretation of LQ control. Consequen-
tly, the on-line tuning was introduced. This way of design 
forms sound physical interpretation for tunable controller 
parameters. The design with tuning was applied and de-
monstrated on real gearbox mechatronic system occuring 
frequenty in production machines (e.g. rolling mills) 
and in industrial robots (geared robotic arms). The represen-
tative results are discussed in section dealing with real time 
control of gearbox mechatronic system. 
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Exponential Stability 
of Networked Control Systems 
with Random Delays  

Dušan Krokavec 

Abstract 
In this paper, the problem of exponential stability for the standard form of state con-
trol, realized in a networked control system structure, is studied. To deal with the 
problem of exponential stability analysis of the event-time-driven modes in the net-
worked control systems the delayed-dependent exponential stability condition are 
proven and actualized. Based on the delay-time dependent Lyapunov-Krasovskii 
functional the linear matrix inequalities for stability conditions are new formulated. 
Since presented method can use bilinear matrix inequality techniques it is computa-
tionally enough efficient and extended. 

Keywords: Networked systems, stability analysis, time-delay systems, linear matrix 
inequality, state feedback. 

 
Introduction  

Recent advances in the communication technology lead to 
an increased use of the networked control. The networked 
control systems (NCS) are control loops closed through a 
shared communication network, where the network between 
control system components is used to exchange the infor-
mation and control signals. The advantages of such struc-
ture are most of all simple installation, maintenance and 
system volume, as well as increased system agility. How-
ever, due to communication channel insertion, induced 
delay and packet dropout may seriously deteriorate the 
performance of the system, especially its stability. 

During the previous decade, the stability problem of the 
networked control systems with random delays has at-
tracted a lot of attention. The main approach for the stability 
analysis relies on Lyapunov--Krasovskii functional and on 
LMI approaches for constructing common Lyapunov func-
tion. For the reason of the network-induced delays it is often 
assumed that the actuator and the controller are event 
driven, but once the large delay bound appears, the system 
may become unstable. The usual approach ignores in the 
controller design stage the network delays [13] and in the 
next design step is analyzed stability, performance and 
robustness with respect to the effects and the characteris-
tics of the network delays and the scheduling policy. Pro-
gress review in this research field one can find e.g. in [3], 
[10], [20], and the references therein. 

This paper is concerned with the problem of the event-time-
driven mode in the networked control systems. Under this 
mode in a critical event a switched delay system structure is 
occasioned, which may include an unstable subsystem. The 
paper actualizes, completes and extends the basic idea 
presented in [16] in coincidence with [19] to obtain condi-
tions for the exponential stability of such structure. Possibly 
time-varying delay is considered and main attention is fo-
cused on the linear matrix inequalities (LMIs) which have to 
hold to obtain the control process exponentially stable. The 
presented LMI approach is computationally efficient as it 
can be solved numerically (see e.g. [1], [8]), and is based on 

Lyapunov-Krasovskii functional (see e.g. [4], [6]) and Leib-
niz-Newton formula to eliminate some dead-time dependent 
terms [12]. 

1. Problem Description 

Through this paper the task is concerned with the stability 
analysis of NCS, where a linear dynamic system given by 
the set of equations 

( ) ( ) ( )t t t= +q Αq Bu&   (1) 

( ) ( )t t=y Cq   (2) 

is controlled by the delayed state feedback. Here ( ) nt ∈q R , 
( ) rt ∈u R  and ( ) mt ∈y R are vectors of the state, input and 

measurable output variables, respectively, and the system 
parameters n n×∈A R , n r×∈B R and m n×∈C R are real matri-
ces. Problem of the interest is to design the stable NCS with 
the memory less linear  state feedback controller of the form 

( ) ( )t t=u Kq   (3) 
where matrix r n×∈K R is the controller gain matrix. Accept-
ing a network delay-time, the event-time-driven closed-loop 
system (1), (2) takes the form 

( ) ( ) ( ), , )k k k kt t i t t i t jτ= + ∆ ∈〈 ∆ +q Αq BKq&   (4) 

1 1( ) ( ), , )k k kt t t j i t τ+ += ∈〈 ∆ +q Αq&   (5) 

where ik: k = 1,2,... are some integers, ∆t is the sampling 
period, and 0kτ ≥  is the time delay, which denotes the time 
interval from the instant time ki t∆ , where the sensors notes 
the sample data from the plat to the instant time when the 
actuators transfer data to the plant. 

In the next it is supposed that this condition is satisfied 

{ 1 1 1 1
1 1

, ( )
, ( )

k k k k k
k

k k k k

i t i i t hj i t h i i t h
τ τ

τ
+ + + +

+ +

∆ + − ∆ + ≤= ∆ + − ∆ + >   (6) 

Event-time-driven mode means, that the controller and the 
actuators data will be updated once a new packet comes, 
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and these new data can be held during the intervening time 
less then h. If at the end of this time interval the new data 
packet has not yet come, acting data will be set to zero and 
they will stay zero until the new data will come. By this rule 
obtained the switched delay system may include an unsta-
ble subsystem (see [16]). 

2. Basic Preliminaries 

2.1 Schur Complement 

The nonlinear convex inequalities can be converted to LMI 
form using Schur complements. Let a linear matrix inequal-
ity takes form 

0, 0, 0T T
T

⎡ ⎤ < = > = >−⎢ ⎥⎣ ⎦
Q S Q Q R RS R   (7) 

Using Gauss elimination it yields 

T
T T

− −

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+=− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1
1
I 0Q SI SR Q SR S 0

S R 0 R0 I R S I   (8) 

Since 

det 1
−⎡ ⎤ =⎢ ⎥⎣ ⎦

1I SR
0 I   (9) 

and I is the identity matrix of appropriate dimension, with 
this transform the negativity of (7) is not changed, i.e. this 
follows as a consequence 

0 0

0, 0

T

T

T

−

−

⎡ ⎤ ⎡ ⎤+< ⇔ <⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

+ < >

1

1

Q S Q SR S 0
S R 0 R

Q SR S R
c                            (10)  

respectively. As one can see, this complement offer possi-
bility to rewrite the nonlinear inequalities in a closed matrix 
LMI form (see e.g. [1], [8]). 

2.2 Zero Complement 

Since Leibniz-Newton formula 

( )d ( ) ( )
t

t
r r t t

τ
τ

−

= − −∫ x x x&   (11) 

implies 

( ) ( ) ( )d
t

t
t t r r

τ
τ

−

− − − =∫x x x 0&   (12) 

it is evident that for any nonzero matrix W of appropriate 
dimension it is true 

( ) [ ( ) ( ) ( )d ] 0
t

T

t
t t t r r

τ
τ

−

− − − =∫z W x x x&   (13) 

where z(t) is an arbitrary vector (see [7], [16]). 

2.3 Symmetric Upper-bounds Inequality 

Let ( ( ), ), ( ) , 0, , 0, ,n n nf r v r a a×∈ > ∈ > ∈x x X XR R R  is 
any real positive definite and integrable vector function of 
the form 

( ( ), ) ( )e ( )T avf r v r r=x x Xx   (14) 

such, that there exists well defined integration as following 

0

( ( ), )d d 0
t

b t v
f r v r v

− +

>∫ ∫ x   (15) 

where 0, , 0, )b b t≥ ∈ ∈〈 ∞R .  

Since for (14) one can write 

( ) e ( ) ( ) e ( ) 0T av T avr r r r− =x Xx x Xx   (16) 

thus, by Schur complement, it is true, that 

1
( ) e ( ) ( ) 0( ) e

T av T

av
r r r

r − −
⎡ ⎤ ≥⎢ ⎥⎣ ⎦
x Xx x

x X   (17) 

and the double integration of (17) leads to 

0 0

0 0
1

( ) e ( )d d ( )d d
0

( )d d e d d

t t
T av T

b t v b t v
t t

av

b t v b t v

r r r v r r v

r r v r v
− + − +

− −

− + − +

⎡ ⎤
⎢ ⎥

≥⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

x Xx x

x X
  (18) 

Then with 
1 1e d e

t
av av

t v
r v− − − −

+

= −∫ X X   (19) 

as well as with 

2

0 001 1 11

01 1 11

e d e e d

( 1)e

av av avv
a ab

b b
av

a b

v v v v

va c

− − − − − −

−
− −

− − − −

−

− = − =

= + =

∫ ∫X X X

X X
  (20) 

for 

2
1 1 (1 e e )ab ab

a
c ab− −= + −   (21) 

inequality (18) can be rewritten as 

0 0

1 1

( ) e ( )d d ( )d d 0
t t

T av T

b t v b t v
r r r v r r v

c
− + − + − −

⎡ ⎤
⎢ ⎥ ≥
⎢ ⎥∗⎣ ⎦

∫ ∫ ∫ ∫x Xx x

X
  (22) 

It is evident, that (22) implies 
0

0 0

( ) e ( )d d

( )d d ( )d d

t
T av

b t v Tt t
T

b t v b t v

r r r v

r r v c r r v
− +

− + − +

≥

⎡ ⎤ ⎡ ⎤≥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫ ∫ ∫

x Xx

x X x
  (23) 

(see e.g. [16]). Hereafter ∗  denotes the symmetric item in a 
symmetric matrix. 

3. Exponential Stability  
of the Autonomous System 

Defining the delay-dependent Lyapunov-Krasovskii functio-
nal as follows 

1
0

( )( ( )) ( ) ( ) ( ) e ( )d d 0
t

r tT T

h t v
v t t t r t r vα −

− +

= + >∫ ∫q q Pq q Rq& &   (24) 

where 0, 0T T= > = >P P R R and evaluating derivative of this 
functional one obtains 

1 1

1

0

0
( )

1

v( ( )) ( ) ( ) ( ) ( )
( ) e ( )d ( ) e ( )d

( )e ( )d d 0

T T

t t
hT T

t t ht
r tT

h t v

t t t t t
h r r r r r r

r r r v

α α

αα

−

−
−

− +

= + +

+ − −

− <

∫ ∫

∫ ∫

q q Pq q Pq
q Rq q Rq

q Rq

& &&

& & & &

& &

  (25) 
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1

1
0

( )
1

v( ( )) ( ) ( ) ( ) ( ) ( ) ( )
( ) e ( )d

( )e ( )d d 0

T T T

t
hT

t ht
r tT

h t v

t t t t t h t t
r r r

r r r v

α

αα

−

−
−

− +

= + + −

− −

− <

∫

∫ ∫

q q Pq q Pq q Pq
q Rq

q Rq

& & & &&

& &

& &

  (26) 

respectively. Therefore, this follows as a consequence 

1

2

2

1 2

v( ( )) v( ( ))
( )( ) ( )

( ) v ( ( )) ( ) e ( )d 0

T T T

t
hT

t h

t t
t h t

t r r rα

α
α

α α −

−

− ≤
+ + − −

− + − <∫

q q
q A P PA A RA P q

q q Rqo

&

& &&

  (27) 

where 
0 0

v ( ( )) ( )d d ( )d d
Tt t

T

h t v h t v
t r r v c r r v

− + − +

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ ∫q q R qo & &&   (28) 

1 1
2
1

1 1
1(1 e e )h hc h α α

α
α −− = + −   (29) 

Since it can be written 
0 0

0

( )d d ( ( ) ( ))d

( ) ( )d ( ) ( )d

t

h t v h t

h t h

r r v t t v v

h t t v v h t r r
− + −

− −

= − + =

= − + = −

∫ ∫ ∫

∫ ∫

q q q

q q q q

&
  (30) 

then 

v ( ( )) ( ) ( )d ( ) ( )d
Tt t

t h t h
t h t r r c h t r r

− −

⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫q q q R q qo&   (31) 

and using notation 

( ) [ ( ) ( ) ( )d ]
t

T T T T

t h
t t t h r r

−

= − ∫p q q q   (32) 

equality (31) can be rewritten as 

[ ]v ( ( )) ( ) 0 0 1 ( )
1

T
h

t t c h t
⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

q p R po&   (33) 

Using (32) by the same way constraint (13) can be adapted 
for solution in the next form 

( ) [ ( ) ( ) ( )d ]

[ ( ) ( ) ( )d ] ( ) 0

t
T T T

t ht
T T T T

t h

t t t h r r
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respectively, where 
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Therefore, with (33) and (36) inequality (27) takes form 
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where 
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Since 
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the extended weighting matrix takes structure  
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where 
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Thus, it is evident that 
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where 
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Analogously to (17), it yields 
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and since 
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the following is obtained 
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Thus, using (50) it is possible to note 
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Completing (51) to square with notation 

11 e hh α−−= −Z R   (52) 
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gives 
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Since  Z < 0 implies ( )tθ < 0, it is obvious that 
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if and only if 
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Combining Schur complement property with (36) and (45), 
inequality (55) can now be rewritten as follows 
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Given matrices P > 0, R > 0, and scalars 1α  > 0, h  > 0, then 
(54) is negative, if there exist scalar 2α  > 0 and matrices 

, 1, 2,3i i =W  such that (56) holds. Therefore it also holds 
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(compare with [18]). Integrating (58) from 0 to t results in the 
formulas 

2 2

2 2

2
0

0

(e v( ( )) e v( ( )))d

e v( ( )) e v( ( )) v( (0)) 0

t
r r

tr t

r r r

r t

α α

α α

α− −

− −

− =

= = − <

∫ q q

q q q

&
  (59) 

2v( ( )) e v( (0))tt α<q q   (60) 

respectively. It is obvious, that with these conditions the 
trajectories of an autonomous system are stable. 

4. Exponential Stability  
of the Controlled System 

Since in this case the derivative of Lyapunov-Krasovskii 
functional also takes form (26), it implies 
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With the known matrix K of the control law (4) the system 
state equation is 
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respectively, where 
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On the other hand, for h  > 0 and any semi-positive definite 
matrix 0≥Q it is true 
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In this regime the constraint can be adapted for solution in 
the structure (67). Then it is possible to combine elements in 
integrals in (61), (66) and (70) as follows 
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Now it is possible to express 
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Inequality (61) can be written now in the form 
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Using Schur complement property (79) can be partitioned as 
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11 1 1 1 11
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It is evident, that for given constants 1 0,α >  0,h>  and 
matrix K the system is stable, if there exist matrices 0,>P  

0,>R  and 0,>Q  as well as 1V and 2V such that 

0, 0• •< ≥U Q   (87) 

Therefore, it holds 

1 1
1e v( ( )) e v( ( )) 0t tt tα α α− <q q&   (88) 

Integrating (88) from 0 to t gives 
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and so 

1v( ( )) e v( (0))tt α−<q q   (90) 

It is clear, that satisfying these conditions the control en-
sures that all trajectories of the networked controlled system 
are stable. 

5. Optimization 

Solving (87) with (73), (80) - (86) can be obtained any 0.h>  
Then according (56) it is possible to compute 2 0α > and to 
approximate intervening time 0h >o as follows 

1
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( )h h h h
α α
α α

∗

∗

−
= + −

+
o   (91) 

where 

0 10 , 0k hτ α α∗≤ ≤ < <   (92) 

Thus, an optimal solution can be obtained as a minimization 
of (56) with respect to 2 0.α > It is obvious, that the maxi-
mum of 0h> does not necessarily means the maximum of  
the parameter .ho  

Solving all matrix inequalities, i.e. (73), (80), as well as (56), 
one can obtain the average decay degree 2 0.5α α∗=  for 
which switched system is exponentially stable. 

Concluding Remarks 

This paper presents the modified method of determining the 
delay-dependent exponential stability criteria for the event-
time--driven modes in the networked control system. Based 
on the linear matrix inequalities some free weighting matrix 
design parameters are introduced to obtain size of the 
available rate under which the system can stay exponential 
stable. It seems that these criteria are less conservative 
then existing ones. 
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A Comparision  
of Different EKF Approaches  
for Parameters Estimation 

Juraj Vöröš, Ján Mikleš, Ľuboš Čirka 

Abstract 
In many chemical engineering applications the extended Kalman filter (EKF) is often 
used to deal with certain classes of nonlinear systems. This paper compares basic 
and polynomial approach of EKF for parameters estimation of nonlinear continuous-
time stochastic systems. The proposed approaches are used to estimate constants 
k11 and k22 for interacting tank-in-series process and frequency factor k0 and tem-
perature of reaction mixture ϑ for continuous stirred-tank reactor (CSTR). 

Key words: Extended Kalman filter, nonlinear systems, parameter estimation 

 
Introduction 

Parameter estimation is one of the steps involved in the 
formulation and validation of a mathematical model and 
refers to the process of obtaining values of the parameters 
from the matching of the model-based calculated values to 
the set of measurements (data). [3] 

Many papers have studied parameters estimation using 
various techniques. In [5] comprehensive approach to esti-
mate kinetic parameters when the involved reactions con-
tain lumped chemical species is presented. This approach is 
based on representing rate constants with a continuous 
probability distribution function. In [1] simultaneously both 
heat transfer and kinetic parameters estimation under react-
ing conditions in a single tube wall-cooled fixed-bed reactor, 
and a two-stage parameter estimation was developed. The 
advantages of using maximum-likelihood estimators rather 
than simple least-squares estimators for the problem of 
finding unsaturated hydraulic parameters were demon-
strated in [6]. In [4] global optimization approach tailored to 
the error-in-variables parameter estimation problem for 
nonlinear algebraic model was presented. A modified ge-
netic algorithm to solve the parameter identification problem 
for nonlinear digital filter was used in [7]. Model estimation 
using fast orthogonal search is presented in [2].  

In this work we apply basic and polynomial approaches of 
EKF to estimate constants k11 and k22 for interacting tank-in-
series process and frequency factor k0 and temperature of 
reaction mixture ϑ for continuous stirred-tank reactor and 
compare their performance.  

1. The Continuous-time  
Extended Kalman Filter 

Consider the following general nonlinear system model [9]:  
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Qw
vxhy
wuxfx
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=&

 (1) 

where f(·) and h(·) are general nonlinear functions. The 
noise processes w and v are white, zero-mean, uncorre-
lated, and have known covariance matrices Q and R. Equa-
tion (1) is expanded using Taylor series around a nominal 
control u0, nominal state x0, nominal output y0, and nominal 
noise values w0 and v0. This gives the following approxi-
mately correct linear system 
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The ∆ quantities in the above equations are defined as 
deviations from the nominal trajectory:  
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where 
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We assume that the control u(t) is perfectly known, so that 
u0(t) = u(t) and ∆u(t) = 0. The matrices on the right side of 
(2) are given as 
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The Kalman filter equations for the linearized Kalman filter 
are 
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where P is equal to the covariance of the estimation error.  
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Now we will extend the linearized Kalman filter to directly 
estimate the states of a nonlinear system and linearize the 
nonlinear system around the Kalman filter estimate. This is 
the idea of EKF.  

Combine the 0x&  in equation (4) with x&̂∆  the expression in 
equation (6) to obtain 
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 (7) 

 Now choose )(ˆ)( tt xx0 =  so that 0x =)(ˆ t∆  and 

0x =∆ )(ˆ t& . Then equation (7) becomes 

)],,ˆ([),,,ˆ(ˆ tt 00 vxhyKwuxfx −+=&  (8) 

The continuous-time EKF can be summarized as follows:  

Compute the following partial derivative matrices evaluated 
at the current state estimate:  
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Compute the following matrices:  
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Execute the following Kalman filter equations:  
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where the nominal noise values are given as w0 = 0 and v0 = 
0.  

This is the basic approach of EKF where Kalman gain 
matrix K design is based on covariance matrix of estimation 
error P obtained from differential Riccati equation. 

Now we will derive the polynomial approach of EKF. Kal-
man gain matrix K design is based on solution of the Dio-
phantine equation.  

Matrix transfer functions of the observable system [8] are 
given as 

)()()( 11 sss LsL BAAIC −− =−  (12) 

where AL, BLs are left coprime polynomial matrices and AL 
is row reduced.  

If the gain matrix K exist, it is unique and of the form 
1−= RR XYK  (13) 

Then XR and YR are solution of the Diophantine equation 

)()()( sss LRLsRL OYBXA =+  (14) 

OL(s) is a stable polynomial matrix with 0)(det ≠sLO  and is 
given from spectral factorization as follows. Adding sP to 
either side of algebraic Riccati equation (assuming, that the 
noise processes have known covariance matrices Q and R 
= I)  

QCPPCPAAP −=−+ TT  (15) 

gives 

CPPCQAIPPAI TTss −=−−+− )()(  (16) 

Multiplying from left by 1)( −− AIC s and from right by 
TTs CAI 1)( −−− and using (11), (12) yields 
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Adding )()( ss T −LL AA  to either side of this equation gives 
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 (18) 

Then matrix OL(s) can be found from the spectral factoriza-
tion equation  

)()(
)()()()(
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T
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 (19) 

2. Parameters Estimation 

In order to estimate the parameters θ, we first augment the 
state with the parameters as extra states with no dynamics 
to obtain an augment state vector [9]: 

⎥
⎦

⎤
⎢
⎣

⎡
=

θ
x

x~  (20) 

Our augment system model can be written as 

),,,~(
~),,,(~ twuxf

0
wuxf

x =⎥
⎦

⎤
⎢
⎣

⎡
=

t&  (21) 

Note that ),,,~(
~

twuxf  is a nonlinear function of the aug-
mented state x~ . We can therefore use an extended Kalman 
filter to estimate x~ . 

3. Mathematical Modelling 

3.1 Interacting Tank-in-Series Process 

We consider [8] the interacting tank-in-series process shown 
in Fig. 1. The process input variable is the flow rate q0. 

 
Fig.1 An interacting tank-in-series process 

The process state variables are heights of liquid in tanks h1, 
h2. Assuming that liquid density, F1 and F2 are constant, 
mass balance for the process yields 

10
1

1 qq
dt
dhF −=  (22) 

21
2

2 qq
dt
dhF −=  (23) 

Inlet flow rate q0 is independent of tank states whereas q1 
depends on the difference between liquid heights 

21111 hhkq −=  (24) 
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Outlet flow rate q2 depends on liquid height in the second 
tank 

2222 hkq =  (25) 

Substituting q1 from equation (24) and q2 from (25) into (22) 
and (23) we get 
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 (26) 

with arbitrary initial conditions 

202

101

)0(
)0(

hh
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=
=

 (27) 

To estimate constants k11 and k22, two more equations are 
needed 

0
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Equations (18) and (20) are now nonlinear system model for 
parameters estimation. 

According to (9) 
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and 
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Parameters of the interacting tank-in-series process are 
shown on Tab.1. 

 

 

 

 

 

 

q0 1 m3 h-1 
k11 0.8 m5/2 h 
k22 1.5 m5/2 h 
F1 0.8 m2 

F2 0.8 m2 

Tab.1 Parameters of the interacting  
tank-in-series process 

3.2 Continuous stirred-tank reactor 

We consider CSTR [8] with a simple exothermal reaction 
A→B (Fig. 2). 

 
Fig.2 A nonisothermal reactor 

For the development of a mathematical model of the CSTR, 
the following assumptions are made: neglected heat capac-
ity of inner walls of the reactor, constant density and specific 
heat capacity of liquid, constant reactor volume, constant 
overall heat transfer coefficient, and constant and equal 
input and output volumetric flow rates. As the reactor is well-
mixed, the outlet stream concentration and temperature are 
identical with those in the tank.  

A mass balance of component A can be expressed as 

),( ϑAAAV
A cVrqcqc

dt
dc

V −−=  (31) 

The rate of reaction is strong function of concentration and 
temperature (Arrhenius law) 

A
R
E

AA cekkccr ϑϑ
−

== 0),(  (32) 

Heat balance gives 
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 (33) 

Initial conditions are 

0

0

)0(
)0(

ϑϑ =
= AA cc

 (34) 

To estimate the temperature of reaction mixture ϑ and fre-
quency factor k0, one more equation is needed 

0
00

0 )0(0 kk
dt
dk

==  (35) 

Equations (31), (33) and (35) are now nonlinear system 
model for parameters estimation. According to (9) 
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where 
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and 

( )001=C  (37) 

Parameters of the reaction and reactor are shown on Tab.2. 

 
cAV 1.2 kmol m-3 

cP 4.05 kJ kg-1 K-1 

E 107280 kJ kmol-1 

F 6.08 m2 

k0 7.93e15 min-1 

V 1.7 m3 
∆H -150000 kJ kmol-1 

q 0.2 m3 min-1 

R 8.314 kJ kmol-1 K-1 

α 41.2 kJ m-2 min-1 K-1 

ϑC 318 K 
ϑv 313 K 
ρ 998 kg m-3 

Tab.2 Parameters of the reaction and reactor 

4. Simulation Results 

For the tank-in-series process parameters estimation simu-
lation, the following values were tracked: q0(t) = 1 m3.h-1 for 
t < 0 h and q0(t) = 1.1 m3.h-1 for t ≥ 0 h. Initial conditions for 
estimated parameters: k11 = 1 m5/2h, k22 = 1 m5/2h. True 
values of parameters are: k11 = 0.8 m5/2h and 
k22 = 1.5 m5/2h. Fig. 3,4 show the estimation results for tank-
in-series process. 
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Fig.3 Estimation of the k11 constant 
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Fig.4 Estimation of the k22 constant 

For the CSTR parameters estimation simulation, the follow-
ing values were tracked: cA0(t) = 1.2 kmol.m-3 for t < 0 h and 
cA0(t) = 1.15 kmol.m-3 for t ≥ 0 h. Initial conditions for esti-
mated parameters: ϑ = 320 K, k0 = 7x1014 min-1. Fig. 5,6 
show the estimation results for CSTR. True value of pa-
rameter k0 is 7.93x1015 min-1. 
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Fig.5 Estimation of the temperature of reaction mixture 
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Fig.6 Estimation of the frequency factor k0  

The estimation of parameters and states is carried out in 
presence of noise. Because there is no general rule for the 
choice of the matrix Q , it was chosen experimentally in 
order to ensure its positive definition (diagonal matrix). From 
the results it is observed that both presented approaches 
give very high accuracy of parameters estimation. But we 
can see that the performance of polynomial approach algo-
rithm is higher then the performance of basic approach 
algorithm, because the true values of parameters are 
reached faster. 

Conclusion  

In this paper, parameters estimation of nonlinear continu-
ous-time stochastic system using continuous-time extended 
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Kalman filter (EKF) is presented. Basic and polynomial 
approach of Kalman gain matrix K design was used to esti-
mate constant k11 and k22 for interacting tank-in-series proc-
ess and frequency factor k0 and temperature of reaction 
mixture ϑ for continuous stirred-tank reactor. 
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Real-Time Control of a Thermo-
Optical Device Using Polynomial 
Approximation of MPC Scheme 

Martin Herceg, Michal Kvasnica, Miroslav Fikar and Ľuboš Čirka 

Abstract 
This paper deals with real-time control of a thermo-optical device. A polynomial 
approximation of the optimal Model Predictive Control (MPC) feedback law is 
employed as a controller. Such an approximate controller enjoys the key benefits of 
MPC schemes, namely it provides all-time constraint satisfaction and closed-loop 
stability guarantees. The main advantage of the proposed approximation scheme is 
that it can be implemented in real time using very limited computational resources. 

Keywords: model predictive control, multiparametric programming, polynomial 
approximation 

 
Introduction 

MPC is a leading strategy in the control industry which 
offers optimal management of processes, and equally 
important, meets satisfaction of plant constraints [16], [6]. 
Based on the process model, MPC approach foresees the 
future behavior of the process and searches for the best 
possible control inputs. This process is repeated every time 
as new process measurements arrive. As the search for 
best inputs is achieved by solving an optimization problem, 
process constraints can be easily handled which makes 
MPC superior to traditional proportional-integral-derivative 
(PID) controllers.  

Since the general introduction of predictive control by [8], 
numerous MPC techniques have been established and most 
of them ended as commercially available products [21]. This 
variety of MPC schemes can be separated in two groups, 
depending on how the particular optimization problem is 
solved. In the first group the optimization problem is solved 
on-line, that is, as the plant is under operation. This case 
applies to the majority of the processes in chemical industry 
with slow dynamics where there is enough time and 
computational resources for the optimization to terminate in 
time.  

In the second group the optimization problem is solved off-
line, that is, before plant’s start-up. This approach is 
appealing especially for simple plants with fast dynamics, 
e.g. from electro-technical industry [9], [17]. This approach 
is often referred to as explicit MPC and for a recent survey 
see [1]. In the explicit MPC approach, most of the 
computational burden arising from optimization is shifted 
before the implementation phase, and the resulting 
controller is pre-computed for all admissible operating 
conditions. The controller takes of a form of a piecewise 
affine (PWA) function mapping the initial conditions to the 
optimal sequence of control inputs. The implementation of 
such controllers then consists of a mere evaluation of such 
a function for the currently measured value of plant states. 
However, the complexity of the solution (and hence the 
complexity of the implementation phase) grows, in the worst 
case, exponentially withe the problem size [24].  

Up to date the best implementation scheme for evaluation of 
a PWA functions is the translation to a binary search tree, 
where the implementation complexity is logarithmic in the 
number of regions [22]. However, when considering 
application where the sampling frequency is very high, even 
the binary search tree algorithm can be of prohibitive 
computational complexity. An alternative approach based on 
polynomial approximation of the explicit MPC control law 
has been developed recently [14]. This method offers a 
suboptimal replacement of PWA function by a polynomial 
control law which significantly reduces requirements for 
storage and on-line evaluation. So far this method has been 
tested on a model of a DC-DC buck converter [18]. This 
paper presents a benchmark experiment for this method 
where the controlled plant is represented by a thermo-
optical device with fast dynamics and rapid sampling. 

Device Description 

The uDAQ28/LT thermal-optical system is an experimental 
device aimed primarily for education purposes [11]. The 
device allows for real time measurement and control of 
temperature and light intensity. It can be connected to a 
personal computer via an universal serial bus (USB) without 
requiring an input-output card (Fig. 1). Data acquisition and 
real-time control of the uDAQ28/LT device is carried out in 
the Matlab/Simulink environment which allows very easy 
manipulation with the device.  

The plant represents a dynamical system which combines 
slow and fast dynamics. The slow process is characterized 
by a heat transfer and the fast process corresponds to light 
emission. Both processes are caused by an embedded light 
bulb which is controlled by an input voltage signal. In 
general, the plant is characterized by five inputs and eight 
outputs whereas only three controlled inputs and three 
measured outputs are of interest. A precise description of 
these signals is given in Tab. 1.  

The construction of the device suggests offers two main 
control loops. The primal loop regulates the light intensity by 
manipulating the input voltage to the bulb (or input voltage 
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to LED1 diode). The second loop maintains the inner 
temperature in safety limits by manipulating the revolutions 
of a cooling fan. Presence of physical constraints on 
manipulated and controlled variables makes the control task 
challenging and the device has often been used for 
benchmark of constrained PID control approaches [10].  

 

 
Fig. 1 Front view on a thermo-optical device 

uDAQ28/LT. 

 

Signal Name Range 

Input voltage to light bulb 0-5 V 
Input voltage to cooling fan 0-5 V 

Input voltage to LED 0-5 V 
Inner temperature 0-100 deg C 

Light intensity not given 
Revolutions of the cooling fan 0-6000 rpm 

Tab. 1 Description of measured and controlled signals. 

Identification and PWA model 

In the sequel, only the optical channel of the light bulb is 
considered. This decision is motivated by the fact that this 
channel is represented by a fast dynamics, which makes 
real-time implementation of a control system a challenging 
task. Due to very fast responses of the light channel, the 
sampling rate was selected the lowest admissible by 
Windows, i.e. 05.0=sT s. 

Input-output relations of the optical channel have been 
identified with the help of IDTOOL Toolbox [23] as a second 
order discrete transfer function  

2
2

2
1

2
1

1
)(

−−

−
−

++
=

zaza
bzzG  (1) 

where b , 1a , 2a  are constant parameters and 1−z  is a 
discrete time delay operator [20]. IDTOOL toolbox contains 
the recursive least squares method of [12] which provides 
very good estimates of the unknown parameters. However, 
as transfer function is valid only locally, the identification 
was performed over four operating points and the results 
are summarized in Tab. 2. 

 

                                                 
1Light Emitting Diode 

 

 input output b  1a  2a  

(1) 1.3 6.84 2.03 -1.07 0.46 
(2) 2.5 19.46 3.56 -0.97 0.43 
(3) 3.5 32.09 4.51 -0.91 0.41 
(4) 4.5 45.86 5.39 -0.87 0.40 

Tab. 2 Identification data over four operation points. 

For the use in explicit MPC scheme, the input-output 
representation (1) is transformed to a discrete state-space 
model. It is achieved by introducing state variables with 
discrete time instant k , i.e. )1()(1 −= kykv , )2()(2 −= kykv  
and the state space model reads   

)()()()1( 22111 kbwkvakvakv +−−=+  (2a)
 

)()1( 12 kvkv =+  (2b)
 

)()( 2 kvky =  (2c) 

In (2) )(kw  represents the input voltage applied directly to 
the plant and )(ky  is the measured output. Voltage input is 
constrained  

]5,0[)( ∈kw V (3) 

and the measured output lies inside the interval  

]55,0[)( ∈ky  (4) 

of light intensity units (are not given in the reference 
manual). The overall input-output behavior of the optical 
channel can be recovered by aggregation of the local linear 
models (2) which forms piecewise linear or PWA model. 
Here, the operating area is first split into regions and local 
linear models are assigned to each such region. The overall 
behavior of PWA model is then driven by switching between 
the locally valid models using logical IF-THEN rules. To 
perform partitioning of the operating area according to 
linearization points in Tab. 2, a Voronoi diagram [2] is 
constructed, which directly returns partitions of the state 
space as a sequence of convex polytopes. This operation 
was executed using one of the routines included in MPT 
toolbox [13] and it returned following regions:   

{ }15.13)(0|)( 21 ≤≤= kvkvR  (5a) 

{ }77.25)(15.13|)( 22 ≤≤= kvkvR  (5b) 

{ }97.38)(77.25|)( 23 ≤≤= kvkvR  (5c) 

{ }55)(97.38|)( 24 ≤≤= kvkvR  (5d) 

To each of the regions (5), a corresponding local linear 
dynamics (2) is assigned, and it forms overall PWA model. 
Although PWA models are, in general, still non-linear, the 
underlying piecewise linearity allows for somewhat simpler 
controller design compared to full non-linear setups. 
Specifically, MPC problems based on PWA models can be 
solved explicitly, where the solution is obtained as a look-up 
table, easily implementable in real time.  

The output from PWA model has been compared to the real 
measured output from the plant and the result is depicted in 
Fig. 2. For the given scenario PWA model follows correctly 
the plant’s output, thus the accuracy of the model is verified. 
It can be noticed that at the beginning there is larger 
mismatch between the plant and the model. It is caused by 
physical properties of a filament in bulb which requires 
certain time to incandesce from a cold startup. As this phase 
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is over, the PWA model correctly captures the optical 
channel of the plant and it can be employed for MPC 
design.  
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 Fig. 2 Verification of the PWA model. 

Constrained Predictive Control 

This section presents the explicit solution to MPC for the 
thermo-optical device uDAQ28/LT. Subsequently, the 
explicit solution is analyzed for stability purposes where the 
sets of stabilizing controllers are investigated. The 
polynomial approximation scheme is applied to obtain a 
real-time implementable controller. 

Prediction Model 

In order to prevent numerical issues when employing the 
PWA model for MPC synthesis, it is advised to perform 
coordinate transformation and normalization. This can be 
achieved by introducing normalized variables 1x , 2x  and u  
as follows:   

1

ref,11
1

)(
)(

v
vkv

kx
−

=  (6a) 

2

ref,22
2

)(
)(

v
vkv

kx
−

=  (6b) 

w
wkwku ref)()( −

=  (6c) 

The suffix “ref” represent the desired steady state value, i.e.  

09.32ref,1 =v , 09.32ref,2 =v , 5.3ref =w  (7) 

which is basically the linearization point of the third 
dynamics (see Tab. 2) and 67.31 =v , 67.32 =v , 5.0=v  are 
constants. Applying the normalization, the transformed PWA 
model yields  

iii fkuBkxAkukxf ++= )()())(),((PWA  (8) 

where 4,3,2,1=i  and state update matrices are given in 
Tab. 3. The state space model (8) is associated with the 
following regions   

{ }16.5)(75.8|)( 21 −≤≤−= kxkxD  (9a) 

{ }72.1)(16.5|)( 22 −≤≤−= kxkxD  (9b) 

{ }88.1)(72.1|)( 23 ≤≤−= kxkxD  (9c) 

{ }25.6)(88.1|)( 24 ≤≤= kxkxD  (9d) 

 

1A  1B  1f   
01
464.0072.1 −

 
0
277.0  

0
492.1−  

2A  2B  2f  =
01
431.0969.0 −

 
0
485.0  

0
642.0−  

3A  3B  3f   
01
410.0913.0 −

 
0
616.0  

0
0  

4A  4B  4f   
01
402.0868.0 −

 
0
735.0  

0
471.0  

Tab. 3 Matrices of the normalized model (8).  

 

Besides the dynamics as in (8), the following constraints are 
assumed to be imposed on the behavior of the prediction 
model:   

 
{ }25.6)(75.8,25.6)(75.8|)( 21 ≤≤−≤≤−= kxkxkxX  (10a) 

{ }3)(7|)( ≤≤−= kukuU  (10b) 

State constraints X  are derived from the operating range of 
light intensity (4) and input constraints U  represent the 
saturation limits (3).  

 Control Problem 

The aim of the control strategy is to find an optimal 
sequence of control inputs such that all system states are 
driven to a desired equilibrium. The equilibrium is given by 
the linearization point for the third PWA dynamics (8) and in 
the transformed coordinates (6) it is exactly the origin, i.e. 

0)(1 =kx , 0)(2 =kx , 0)( =ku . Mathematically, the problem 
can be formulated as to find a sequence of future control 
moves [ ])1(,),1(),( −++ Nkukuku K  up to horizon N  which 
steer the system states/input to the origin while satisfying 
constraints (10). More precisely,   

 

∑
−

=
−+

+++
1

0
11)1(,),(

)()(min
N

j
Nkuku

jkRujkQx
K

 (11a) 

s.t.  ))(),(()1( PWA kukxfkx =+  (11b) 

 fXNkx ∈+ )(  (11c) 

 Xjkx ∈+ )(  (11d) 

 Ujku ∈+ )(  (11e) 

where [ ]Tkxkxkx )(),()( 21=  represents the state vector, the 
function )(PWA ⋅f  describes the PWA model defined in (8) 
and the sets X , U  are the constraints on input and state 
variables given by (10). The set fX  is introduced to obtain 
closed-loop stability guarantees [19]. The index 1 in the cost 
function (11a) denotes the 1-norm of given expression (sum 
of absolute values of vector components), matrices Q  and 
R  represent weighing factors.  

Due to the presence of switching rules in the PWA model 
(8), the overall optimization problem (11) can be cast using 
additional binary variables as a mixed-integer linear 
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program [4] and solved using multiparametric 
programming [5], implemented in freely available tools [13].  

Explicit MPC Synthesis 

Solving problem (11) in a multiparametric fashion gives a 
closed form solution )(ku  as PWA function which maps 

)(kx  onto U . In particular, as was shown by [5], we have 

ii GkxFku += )()(  if iPkx ∈)(  for reg,,1 ni K= . Here, 
{ }iii KkxHkxP ≤= )(|)(  are polyhedral sets (regions) of the 

state-space. Similarly, a closed-form expression for the 
optimal cost function (11a) is again a PWA function of the 
state, i.e. ii LkxMkV += )()(  if iPkx ∈)( .  

The problem (11) has been solved with parameters ∞=N , 
IQ = , 5.0=R  with the help of the MPT toolbox [13]. The 

choice of  ∞=N  guarantees that the obtained MPC 
feedback law will provide closed-loop stability [3].The 
resulting PWA control law builds a look-up table divided into 
118 regions, defined in variables 1x , 2x , and these regions 
are plotted in Fig. 3. Over each one of these regions a local 
feedback law is defined as illustrates Fig. 4. Similarly, the 
cost function is shown in Fig. 5.   

 

Fig. 3 Regions of the look-up table. 

 
Fig. 4 Local control laws over each region. 

 

Fig. 5 Value function. 

 

Fig. 6 Stability tubes. 

Note that in the case of multiparametric solutions, the 
resulting PWA control law can be discontinuous (Fig. 4) and 
defined over a nonconvex set. This is a consequence of 
using binary variables to encode the IF-THEN rules which 
describe behavior of the PWA prediction model.  

To implement the resulting look-up table in the on-line 
experiment, one has to store and evaluate the data. While 
storing part is limited by the available memory, the 
evaluation task is limited by the sampling time. The 
complexity of both tasks depend on the number of regions 

regn . Assuming that we have enough memory to store the 
look-up table, one have to still evaluate the PWA law. In 
fact, this task comprises of two steps  
1. region identification  
2. evaluation of PWA law  

from which the first part consumes the most time. Even with 
the use of binary search tree algorithm, where the 
evaluation time is logarithmic in regn  [22], the scheme can 
still be prohibitive for implementation. Motivated by this fact, 
the goal is to apply the approximation scheme of [14] where 
the whole look-up table is replaced by one polynomial, 
which is very cheap to implement. To do so, we have to find 
the set of all perturbations of the control law under which the 
closed loop renders stability. This will be explained in the 
next section.  

Stability Tubes 

As was shown by [7], the explicit feedback law described in 
the previous section is just one of many stabilizing 
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feedbacks. Specifically, based on the explicit solution 
to (11), one can compute the family of controllers which all 
stabilize the control model (8). This family is characterized 
by sets in the state and input space and is called stability 
tubes.  

Definition 1 [7]: Let )(xV  be a Lyapunov function for the 
system (8) with Xx∈  under a stabilizing controller 

Uxu ∈)( . Then the set  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−≤−+

∈∈
=

))(())(())1((
,)(,)(

),(
kxkxVkxV

UkuXkx
VS

β
β  (12) 

is called a stability tube.  

In other words, stability tubes are sets where the given 
Lyapunov value function )(xV  for system (8) decreases with 
a factor 

p
kxkx )())(( ββ = , 0>β , { }∞= ,1p . Any control 

input from within the stability tube will ensure that the closed 
loop will be stable and constraints on variables won’t be 
violated. Precisely,  

Theorem 1 [7]: Let the assumptions of Definition 1 be 
fulfilled. Then every control law ))(( kxu , Xkx ∈)( , (also any 
sequence of control samples )(ku ) fulfilling  

),())(),(( βVSkukx ∈  (13) 

asymptotically stabilizes the system (8) to the origin, 

Ui iPkx ∈∀ )( .   

Algorithm for computing the stability tubes and all the 
relating routines are included in the MPT Toolbox. Firstly, 
one has to find a piecewise affine Lyapunov function for the 
closed loop system. As the optimal solution is computed 
with the infinite horizon, the value function in Fig. 5 is a 
Lyapunov function. Secondly, one can apply routines for 
computing the stability tubes and the result is a collection of 
polyhedrals in the joint x - u  space and it is shown in Fig. 6.  

Polynomial Approximation 

Using the approximation scheme of [14], the goal is to find a 
polynomial control law of the form  
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which, when applied as a state feedback, guarantees 
closed-loop stability and constraint satisfaction. Theorem 1 
provides a sufficient condition for existence of such a 
polynomial feedback law in the sense that if 

),())(,( βµ VSxx ∈ , Ui iPx∈∀  then )(xµ  will provide 

closed-loop stability and constraint satisfaction. Therefore 
the search for suitable polynomial coefficients ija  of (14) 
can be cast as the following optimization problem:   

∑ −
j

aa
xxu )()(min

32,,11
µ

K
 (15a) 

s.t.  ),())(,( βµ VSxx ∈  (15b) 

From all possible choices of )(xµ  which satisfy (15b), cost 
function (15a) is used to select the coefficients which 
provide best approximation of the optimal feedback law 

)(xu . As was shown in [14], optimization problem (15) can 

be formulated as a semidefinite programming problem, 
which can be solved using off-the-shelf tools.  

The main advantage of the polynomial feedback law (14), 
compared to the MPC controller based on evaluating PWA 
feedback law, is reduction of the total implementation and 
storage cost. On the storage side, only the coefficients ija  
need to be recorded in the memory, compared to storing the 
regions iP  and the feedback laws iF  and iG  for PWA 
feedback law. The on-line implementation cost is also 
greatly reduced, as only polynomial evaluation for a given x  
need to be performed to obtain a stabilizing control action.  

The approximation scheme has been applied to obtain 
polynomial control law of type (14) with help of YALMIP [15]. 
Computed coefficients are given in Tab. 4.  

 

11a , 12a  -0.8718,  -0.0007

21a , 21a  -0.0519,  0.0004 

31a , 32a  0.0019,  0.0001 

Tab. 4 Coefficients of the approximated polynomial. 

Illustration of the approximation scheme is shown in Fig. 7 
which represents a cross-section in stability tubes along the 
coordinate 02 =x . The polyhedral sets in Fig. 7 
demonstrate the space of the stability tubes where there 
exist a stabilizing control law according to Theorem 1. Inside 
this space the approximated polynomial (14) has been fitted 
and it is shown in Fig. 7 with a dashed line while the optimal 
control law is depicted with solid line.  
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Fig. 7 Cross-section of the control laws through 02 =x . 

Real-Time Implementation 

In this section computational requirements are evaluated for 
the optimal and approximated controller. Both controllers 
are applied in the real-time experiment and measured 
performance is discussed.  

Computational Demands 

Implementation of the optimal controller in the on-line 
experiment is limited by the sampling time 05.0=sT s. If the 
look-up table, obtained previously and consisting of 118 
regions, is stored and evaluated using the binary search 
tree algorithm [22], the number of floating point operations 
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per second (FLOPS) which are required to evaluate such a 
controller for a given initial condition is at most 41. The 
memory requirements are 2832 bytes for the control law and 
1536 bytes for the search tree which gives a total of 4368 
bytes.  

In the polynomial approximation scheme, the number of 
FLOPS depend on the degree of approximated polynomial 
and on the polynomial degree. By considering the 
polynomial (14) with degree of three, the upper bound for 
evaluation FLOPS is 14, less than a half of the runtime for 
the binary search tree. More prominent, however, is the 
drop in memory consumption. As state above, the explicit 
MPC solution with 118 regions requires 4368 bytes of 
memory storage, while to store the polynomial feedback 
law (14), mere 24 bytes of memory are required (6 
polynomial coefficients, each of them consuming 4 bytes 
when represented as floating point numbers).  

Experimental Data 

The optimal explicit MPC controller as well as the 
polynomial feedback strategy have been implemented in 
real time and obtained results are shown in Fig. 8, Fig. 9 
and Fig. 10. The plots represent the transition from the initial 
condition [ ]Tx 7.8,7.80 −−=  to the origin. Input signal 
generated by the optimal controller immediately jumps to the 
upper limit and then gently approaches the origin. In the 
polynomial controller this effect is different, the controller is 
slightly slower, but the same stabilizing effect is achieved. 
State and input profiles converge to desired steady state, 
hence the control objective was met with both approaches. 
It is interesting to note that a polynomial controller acts 
better (in the sense of the selected performance criterion 
(11a)) than the optimal one. In particular, (11a) evaluates to 
146.34 when the optimal MPC controller is used as a 
feedback, compared to value of (11a) amounting to 142.96 
for the case where the polynomial controller was used. This 
small difference can be attributed to the fact that the optimal 
controller is more sensitive to changes of the states. 
Nevertheless, the difference is small enough to say that 
both controllers share roughly the same performance while 
the approximated controller is significantly cheaper than the 
optimal one.  
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Fig. 8 Profiles of the state variable 1x . 

Performance of both controllers has not been tested on 
disturbance attenuation because this effect cannot be fully 
compensated by any of the used controllers since they do 
not contain an integration part. Moreover, these effects are 
too small to satisfactory evaluate the performance of both 
controllers while showing their advantages (e.g. constraint 
satisfaction).  
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Fig. 9 Profiles of the state variable 2x . 
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Fig. 10 Input profiles. 

Conclusion 

Main motivation of this paper was to demonstrate a cheap 
alternative to explicit MPC scheme based on polynomial 
approximation of the optimal feedback law. Control of the 
optical channel of uDAQ28/LT device is considered as a 
benchmark example to polynomial approximation scheme of 
[14]. The process is identified as a second order linear 
discrete time system around four operating points. Based on 
the identification data, PWA model is constructed and 
deployed for MPC design. The MPC problem is solved in 
the multiparametric fashion, i.e. precomputing the controller 
for whole possible operating conditions, and the result is 
stored as a look-up table. The properties of the explicit 
solution are further exploited and a family of all stabilizing 
controllers is constructed. From this family, one controller of 
a special polynomial structure has been selected, which 
implementation cost is the cheapest. The polynomial 
controller has been experimentally tested in the closed loop, 
and has shown good results.  
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Predictive control  
of pressure swing adsorption 

Michael Mulholland and M.A. Latifi 

Abstract 
Pressure swing adsorption requires a repeated cycle of four steps. The periods of 
these steps, or other defined terminal conditions, determine the rate and quality of 
the product, and its cost. In transient situations such as upsets or grade changes, it 
is not intuitively obvious how the steps should be progressively altered to bring the 
plant to the desired operating point in an optimal fashion. The present work consi-
ders the problem of real-time maximization of the production of a single adsorber, 
and maintaining a setpoint concentration in its product receiving vessel. In a model-
ling exercise, these objectives have been met using predictive control based on 
completion of the present step, plus two full future cycles to reduce the end-effect. 
The approach sought to be fast and robust by suitable linearisation of the system. 
This allowed MILP solution in the mixed logical dynamical (MLD) framework as a 
mixed integer dynamic optimisation (MIDO). However, this problem was ultimately 
solved faster and more reliably by testing all combinations for constraint violations 
and the objective value. 

Keywords: PSA, hybrid systems, dynamic optimisation, predictive control 

Introduction  

An increasing range of adsorbent materials is extending the 
use of pressure swing adsorption (PSA) in the separation of 
gas mixtures.  These materials are designed to selectively 
adsorb one component from a mixture. As in vapour-liquid 
equilibrium, the equilibrium quantity of this adsorbed com-
ponent in the solid phase increases with its partial pressure 
in the gas phase. Thus the solid can be used to adsorb the 
component at high pressure, and it can be “regenerated” by 
expelling the adsorbed species at low pressure. In air sepa-
ration, N2 is selectively adsorbed, leaving an O2-rich product 
stream. A number of adsorbers can be arranged to work in 
complementary cycles so as to smooth out production flow 
and the use of common resources. 

1. Operation 

The present analysis will focus on a single adsorber with a 
product storage vessel as in figure 1. Four distinct steps, 
comprising the Skarstrom cycle, are required: 
 
(1) pressurisation:  
     A open; B,C & D closed 
 
(2) adsorption at high pressure: 
     A & B open; C & D closed 
 
(3) depressurisation: 
     D open;  A,B & C closed 
 
(4) purge at low pressure:  
     C & D open; A & B closed 
 
During step 2, a high purity product can be obtained, parti-
cularly if some of the product itself is used in step 4 for pur-
ging, as is shown here. 
 

A

B C

D

air N2

O2O2 storage

 
Fig.1 A basic pressure swing adsorption configuration 

for air separation 
 
The mechanism by which a high-purity product is obtained 
is not entirely self-evident. It is in fact achieved by develo-
ping a suitable composition profile in the solid phase which 
acts to “screen” the down-ward moving air in step 2. That 
profile will of course oscillate through each full cycle of four 
steps, but the so-called “cyclic steady state” (CSS) is achie-
ved once a fixed associated profile arises at the end of each 
step. Even with fixed sequencing of the valves A,B,C and D 
(ie. fixed periods for each step), the approach to CSS may 
take many cycles. 
In figure 2 an adsorber is represented as discretised into N 
compartments in series. If thermal effects are neglected, this 
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system is defined by 2×N+1 states. These are the moles of 
the adsorbed species in the gas phase (mi)  and the solid 
phase (wi)  in each compartment i, as well as the total num-
ber of moles  (M)   in the gas phase of a compartment. For a 
uniformly packed bed with no frictional losses one notes that 
M is the same in all compartments, and the total number of 
gas moles in the system is N×M which is clearly proportional 
to the pressure. To re-iterate the comment above regarding 
the CSS, the repeated cycles needed to achieve CSS are 
required to achieve the supporting profiles of mi and wi , with 
the latter determining longer settling times as the adsorbent 
capacity increases. If one imagines the control problem 
associated with the unsteady process, one thus foresees 
several major hurdles: 
 
 (a)    high number of states 
 (b)    few measureable states 
 (c)    hybrid (switched and continuous) 
 (d)    long time-constants  
  
To date, most of the work aimed at optimising PSA opera-
tion has focused on the optimal “positioning” on the CSS 
cycle. The cycle can be positioned by choosing a particular 
set of four times, one for each of the Skarstrom steps. Alter-
natively, it can be positioned by choice of a particular set of 
heuristic rules,  eg. 
 
[1]   pressurise until pressure reaches Pmax 
[2]   adsorb until a total of MFEED moles of feed have 
        been introduced in this step 
[3]   depressurise until pressure reaches Pmin 
[4]   purge until a total of MPURGE moles of product  
        have been returned in this step 
 
 
 

m1
M

w1

m2
M

w2

mi

M
wi

mN-1

M
wN-1

mN

M
wN

r1

r2

ri

rN-1

rN

[ ]i
i i i

dwr k m cw
dt

= = −

f u1

Fu1

f d0

Fd0

f uN+1

FuN+1

f dN

FdN

f ui+1

Fui+1

f di

Fdi

f ui

Fui

f di-1

Fdi-1

 
Fig.2 Discrete representation of states  

in a pressure-swing adsorber 
 
 
 
Models have been quite detailed, accounting for thermal 
effects, pressure losses, nonlinear adsorption isotherms, 

energy, etc, and optimisations have aimed at overall eco-
nomic operation. These are large non-linear optimisation 
problems, such as tackled in [1], [2] and [3]. Indeed, [1] does 
not look for a convergence in time, but rather formulates the 
optimisation problem around a single cycle, including in the 
objective function a minimisation of the deviation between 
the states at the beginning and end of the four steps of the 
cycle. 
  
The relatively small amount of work on the unsteady-state 
quite likely arises from the difficulties (a),(b),(c) and (d) men-
tioned above.  In [4] the authors developed a nonlinear 
distributed parameter observer for PSA based on a Luen-
berger arrangement for error feedback. In [5] these same 
authors present a control scheme which has two parts: A 
feed-forward section sets the time-periods for each step of 
the cycle, based on the sensitivity of production and purity 
predicted offline at CSS. A degree of adjustment of the time-
periods is superimposed for correction of measured quality 
by PID feedback. This type of approach is extended in [6] 
with the feedforward based on the inversion of a reduced-
order model, for example a Hammerstein representation. 
 
One can reflect for a moment on what advantages might 
accrue from dynamic feedback control of PSA. A distributed 
process with long time-constants is inherently difficult to 
adjust, so manual operations are likely to be determined by 
heuristic criteria such as above. In start-up, shut-down or 
recovery from an upset, these are likely to be conservative 
and inefficient. What one seeks is an optimal strategy to 
bring the process from its current point to one which ensu-
res product quality and rate, at minimum cost, possibly in 
coordination with other adsorbers. With this aim, the work 
below investigates the possibility of using robust linear tools 
in an optimal predictive control format, initially applied to a 
single adsorber and product tank. 

2. Model 

The adsorber is modelled as a series of N mixed compar-
tments as in figure 2. Typical values are used for air separa-
tion, using a linear equilibrium relationship for the N2 
(m*=cw) and ignoring the small amount of O2 adsorbed. 
Pressure losses through the bed and thermal effects are 
likewise neglected. In the equations, M and F respectively 
represent the total gas inventory of a compartment, and the 
total gas flow, whereas m and f  refer only to the species 
which is being adsorbed (N2). Flows are divided into “do-
wnward” (d) and “upward” (u), of which one or the other will 
be zero depending on the step of the cycle. 
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             (1) 

 
The only nonlinearity arises as the requirement that the 
effluent composition from a compartment obeys the follo-
wing equations for downward or upward flow respectively. 
 

, ,

, ,

ord i u ii i

d i u i

f fm m
F M F M

= =                        (2) 
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This was linearised using deviations (∆) from an estimated 
operating point (‘) 
 

f f m m
F F M M
′ ′+ ∆ + ∆

=
′ ′+ ∆ + ∆

                 (3) 

 
and neglect of the deviation products. The total flow profile 
Fi in either direction (ie. iF ′ , i = 1,...N) can be estimated 
relatively closely, as can the total number of moles in a 
compartment M. Estimates of the flow and inventory profiles 
of the adsorbed species, fi’ and mi’, were obtained by multi-
plying iF ′  and M  by a composition yav appropriate to each 
Skarstrom step. The linearisation conditions are thus sum-
marised as follows: 
 
[1]  pressurisation:  M’ at Pmax ; F’ reducing linearly from 
Ffeed at top to 0 at bottom; yav at 0 
[2] adsorption at high pressure:  M’ at Pmax ; F’ reducing 
linearly from Ffeed at top to Ffeed - ffeed at bottom ; yav at 0 
[3]  depressurisation:  M’ at 75% Pmax + 25%  Pmin ; F’  
increasing linearly from 0 at bottom to a flow Fdepress at top ; 
yav at (1+yfeed)/2 

 [4]  purge at low pressure:  M’ at Pmin ; F’ profile constant 
at the purge gas flow rate Fpurge ; yav at ypurge 
 
In this way, a discrete linear model for the 2N+1 states is 
constructed for a unique ∆tj suited to each of the Skarstrom 
steps: 
 
[1]  pressurisation:    
      ( ) ( )1 1 1 1with 8t t t t s+ ∆ = + ∆ =x A x b                   (4) 

[2]  adsorption at high pressure: 
      ( ) ( )2 2 2 2with 16t t t t s+ ∆ = + ∆ =x A x b                (5) 

[3]  depressurisation: 
      ( ) ( )3 3 3 3with 16t t t t s+ ∆ = + ∆ =x A x b                (6) 

[4]  purge at low pressure: 
      ( ) ( )4 4 4 4with 8t t t t s+ ∆ = + ∆ =x A x b                  (7) 

 
Should the flow settings Ffeed , Fpurge , Fdepress (or feed or 
purge stream compositions) change, the corresponding 
matrix  Aj (new linearisation point) and vector bj (new pro-
cess input) are updated. Exit flows are determined automa-
tically in the solutions for the constant-pressure steps 2 and 
4. 
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Fig.3 Comparison of (a) Nonlinear Model and (b) Linearised Model predictions  

for Skarstrom cycles using the same switching criteria (Section 1) 
 
In figure 3 the non-linear and linearised model predictions, 
both using 9 compartments, are compared for Skarstrom 

cycles determined by the heuristic switching rules in section 
1 (Pmin = 1 bara; Pmax = 4.5 bara; Total Air used in step 2 = 
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6×104 gmol; Total product used for Purge in step 4 = 1×104 
gmol). For this analysis the composistion of the “Product” 
used for purging was fixed at 5% N2. Actual cumulative 
product compositions were in fact 2.8% N2 for the non-linear 
model, and 5.2% N2 for the linear model, with about 1.5×104  
gmol of product being made on each cycle (ie. reflux ratio = 
2). 

3. Predictive control 

A single PSA unit does not appear to offer a lot of scope for 
dynamic optimisation. The compositions and achievable 
flows of the feed air, and the product used for purging, are 
likely to be fixed. The only control freedom left thereafter is 
the length of each step of the Skarstrom cycle, which could 
equivalently be set by heuristic rules (eg. varying the target 
“breakthrough” composition of the product stream in step 4). 
Even if the flow rates of the feed and purge streams could 
be varied, equation (1) shows that this is equivalent to vary-
ing the time intervals if the adsorption is not rate-controlling 
(k large enough). 
 
Thus a single PSA unit offers just these four adjustments. In 
section 1 it was mentioned how these are manipulated for 
optimisation of the CSS. In contrast, the motive for unstea-
dy-state optimisation lies in dealing with extraneous distur-
bances or objectives. Thus, if the system state finds itself 
away from its optimal value (after a disturbance, or during 
start-up/shut-down), it needs to be guided back in an opti-
mal fashion. Additionally, there will be requirements to main-
tain a set-point inventory within the product storage vessel, 
and to keep it close to a set-point composition. Even for a 
single PSA unit, this offers interesting scope for strategic 
manipulation of its Skarstrom step lengths. With multiple 
PSA units feeding and drawing from the same product sto-
rage vessel, the problem becomes much more complex, 
and it may be anticipated that an integer programming (IP) 
approach for unit coordination will truly be advantageous 
here.  
 
Bearing the above unsteady-state optimisation objectives in 
mind, the present work thus seeks to use robust linear sys-
tem tools for constrained optimisation of one or more com-
plete future Skarstrom cycles, by correct choice of the first 
and subsequent switching points for the steps. Only the first 
switch is implemented, once it is shown to be “due” (imme-
diate). Of course, the remaining switches are only evaluated 
as part of the overall optimisation, and not for use. Though 
the step lengths could be treated as continuous variables for 
optimisation, a “modulated” approach is rather used, entai-
ling a choice of one of several distinct periods for each step. 
Apart from facilitating an IP solution, this will in due course 
also allow coordination with other PSA units. 
 
 
3.1 Optimal predictive control with constraints 
 
In predictive control, one is generally aiming to make the 
best choice of a series of control decisions which affect the 
system output up to a defined future time-horizon. Only the 
first choice is actually implemented, before the entire optimi-
sation is repeated on the next controller time-step. If some 
of the choices are discrete (eg. gears of a car), or indeed, as 
seen above, if there are system behavioural changes, inte-
ger variables enter the problem, and one has a mixed inte-
ger dynamic optimisation (MIDO) problem. 
 
Consider the problem of a single PSA column supplying a 
purified gas to a storage vessel, from which users draw their 
requirements at arbitrary rates (figure 1). Removal of N2 
from air to provide an O2 supply will be the example. The 

objective will be to maintain a desired O2-rich inventory in 
the storage vessel, and to control its composition at a given 
set-point. Discretionary situations arise, for example, if de-
mand is low, and composition is poor - in which case pro-
duction can be reduced and a greater proportion of the N2 
removed, to raise the O2 concentration in the storage ves-
sel. 
 
In the real-time situation, the controller is cycling asynchro-
nously at its own time-interval. In the present case this is 
10s. It does not need to match the ∆tj  of any of the Skar-
strom steps j because the entire optimisation calculation is 
repeated a priori on each controller time-step. What is im-
portant to the control algorithm is to know the system state 
at this time. A first step was thus to develop a state obser-
ver. A Kalman filter based on the linearised models in equa-
tions (4) to (7), changing in sequence, was able to provide 
good estimates of the 2×N+1 state values using just three 
“measurement” outputs of the original non-linear model [ (i) 
pressure P; (ii) product outflow composition during step 2; 
and (iii) purge outflow composition during steps 3 and 4 ]. 
 
Apart from these state values, the predictive control algo-
rithm of course needs to know which of the four possible 
steps of the Skarstrom cycle is presently being conducted. 
(Historical information - eg. how long it has been in this step 
- is not required). A look-up table indicates the required 
future sequence for completion of an entire Skarstrom cycle 
(constrained), followed by a repeat full cycle with the same 
step lengths (unconstrained): 
 
[1]  pressurisation:  
      complete 1 then do 2→3→4→1  , 2→3→4→1 
[2]  adsorption at high pressure: 
      complete 2 then do 3→4→1→2 , 3→4→1→2 
[3]  depressurisation: 
      complete 3 then do 4→1→2→3 , 4→1→2→3 
[4]  purge at low pressure: 
      complete 4 then do 1→2→3→4 , 1→2→3→4 
 
The identified future sequence is then the basis of the opti-
misation. It amounts to a choice of the number of intervals 
∆tj  to spend in each of the Skarstrom steps j (figure 4). The 
result is five separate interval counts. Steps occurring after 
the production step 4 would appear to play a neutral or 
negative role (eg. use of Product for purging). Thus the 
objective function used here is based on one further repeti-
tion of the cycle (n=1) to reduce such “end-effects”. The 
computational load is reduced by forcing the “copies” to use 
the Skarstrom step lengths of the first full cycle. 
 
The main interest is in whether the intervals left in the first 
(partial) step add up to less than the controller time-step. In 
that case the controller must take action now by switching to 
the next Skarstrom step. 
 
The easiest way to structure the optimisation is to constrain 
the operation between liberal bounds such as determined by 
the heuristic rules in section 1 - viz, maximum and minimum 
pressure, and maximum total amounts of Feed and Product 
to be used in the adsorption and purge steps respectively. 
These bounds on their own determine a default Skarstrom 
cycle. The purpose of the optimisation then is to bring the 
terminal points of the cycle inwards in order to maximise the 
objective function.  
 
The optimisation scheme is represented schematically in 
figure 4 in terms of pressure. The variable constraints are 
only considered at the end of each step - ie. at the switching 
point. This will however not be problematic, since the variab-
les associated with the specified constraints all vary mono-
tonically in each step (figure 3). An important motivation for 

46AT&P journal  PLUS2 2009

MODEL PREDICTIVE CONTROL



this scheme is that if necessary, computation can be redu-
ced by narrowing the range of choice in each step, eg. close 
to the number of intervals determined for that mode in the 
preceding optimisation. Using a centred search range, mig-
ration will still occur at successive controller steps. However, 

the first partial step must always extend down to 1 interval 
owing to its function in determining the switching time. Figu-
re 5 illustrates how a selection is made on each step from a 
limited number of “models” for that step, each representing 
a different number of intervals – ie. a different time-span. 

 

purge pressurise adsorb de-pressurise purge

OPTIMISED CHOICES

present
time

future
time

upper constraint

lower constraint

P

4 1 2 3 4

FIRST FULL CYCLE n COPIES

 
Fig. 4  Concept of future Skarstrom step length optimisation  

for a system found (for example) to be in a purge mode on the controller time-step 
 
 
 

 
 

Fig.5  Choice of transition functions of different numbers of intervals for each Skarstrom step 
 

3.2 Solution method 
 
For each of the Skarstrom steps j=1,…4 a range of transi-
tion models is pre-prepared, one for each of the possible 

number of intervals  1 ≤ i ≤ nmax that could be used for that 
step:  
 
( ) ( ) ( ) ( )i i

j j jt i t t+ ∆ = +x A x b                        (8) 
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The new arrays ( )i
jA and ( )i

jb  are obtained by individually 

recursing equations (4) to (7). Now if the particular choices 
of i made to complete the present step j and the next 4 
complete steps are 
 
[ ] [ ] [ ] [ ] [ ], 1 , 2 , 3 , 4i j i j i j i j i j+ + + + , 

 
where it is understood that the index values will “wrap” aro-
und in the range 1,2,3,4, then it is these choices that must 
be made optimally in determining the future state sequence. 
Representing [ ]( )jt i j t+ ∆x  by jx one has 

[ ]( ) [ ]( )
1

i j i j
j j j j−= +x A x b     (partial step)                      (9) 

 
[ ]( ) [ ]( )

[ ]( ) [ ]( )
1

4 3

1,..., 4
i j k i j k

j k j k j k j k

i j k i j k
j k j k j k j k

k
+ +

+ + + − +

+ +
+ + + + + +

⎫= + ⎪ =⎬
= + ⎪⎭

x A x b

x A x b
              (10) 

 
After completion of the present partial step, two whole cyc-
les are executed, with the second cycle re-using the same 
number of intervals in each step as in the first cycle. 
In this form, the problem lends itself to solution in the mixed 
logical dynamical (MLD) framework of Morari and co-
workers in [7], [8] and [9]. Furthermore, the use of linear 
dynamic models allows solution by mixed integer linear 
programming (MILP). The selection of the optimal number of 
steps is facilitated by binary variables δ, eg. for equation (9) 
one requires the constraints 
 

( ) ( )

( ) ( )

max

max 1 max

min 1 min

1

1

i i
j ij j j j

i i
j ij j j j

n

ij
i

δ

δ

δ

−

−

=

+ ≤ + +

+ ≥ + +

=∑

x e A x b e

x e A x b e                     (11) 

 
Here the vectors e contain the maximum and minimum 
deviation values when (all but one of) the i-models are not 
obeyed (large positive and negative numbers).  
 
Whereas the task required was quite simple - viz. choose 
the best combination of interval numbers in the first five 
Skarstrom steps - it became clear that the linear program 
was an inefficient means of solving the problem. The nume-
rous additional constraints required for model choice as in 
equation (11), and to deal with variable limits, slowed down 
LPsolve (Michel Berkelaar, Eindhoven University of Techno-
logy), and caused failures. Even if continuous variables 
were included in the search, it would be quicker to evaluate 
every apex of the system for its objective value and com-
pliance with constraints. Indeed, this was the procedure 
used to produce the results below. 
 
 
 
 
 
 
3.3 Example 
  
A physical description of the system is provided in figure 6. 
The bed is represented as N=9 compartments, and is consi-
dered to behave close to plug flow.  Four constraints are set 
on the operation: Pmax=4.5 bara, Pmin=1.0 bara, maximum 

feed air during the adsorption step 2 MFEED= 60000 gmol;  
maximum  product reflux during the purge step 4 MPURGE = 
10000 gmol. 
 

N2

O2

O2 storage

air

PC

Adsorption bed: 33.3 m3

Void fraction: 0.4
Solid density: 1000 kg m-3

Bed mass: 20000kg
Pure N2 loading at 1 bara: 0.6 gmol kg-1

Pure N2 at 1 bara: 600 gmol in void space
12000 gmol adsorbed on solid

∴ m* = cw requires  c = 0.05 (gmol N2 in gas) 
(gmol N2 in solid)-1

Adsorption rate constant used: k = 0.3 s-1

Bed void gas inventory: 600 gmol at 1 bara
∴ M = 600 P/N   (total gas moles per compartment)

pressurisation
& adsorption:
60 gmol s-1

depressurisation:
40 gmol s-1 

until restricted by desorption rate
purge: on PC

purge:
30 gmol s-1

PC

PC

adsorption:
on PC

fixed holdup:
10000 gmol

setpoint: 10% N2: 10% N2:
20% N2:

7000 s 14000 s

PMAX = 4.5 bara

PMIN = 1.0 bara

 
 
Fig. 6  Configuration for predictive control of product 

concentration in O2 storage vessel 
 

 
The storage vessel is modelled simply using the balances 
 

,

,

S
d N S

S
d N S

S S

S S

dM F F
dt

dm f f
dt
f m
F M

= −

= −

=

                      (12) 

 
where FS and fS are the total and adsorbed species outflows 
from the storage vessel. In this example, a constant molar 
inventory is maintained in the vessel (“overflow” mode), so 
that FS = Fd,N . 
 
The maximisation objective weightings for the 9 Skarstrom 
steps to the prediction horizon have been set as follows: 
 

[ ]
[ ]( )

[ ]( )

8

2

8

100
% N

     gmol
1

    gmol

j

k j

j

k j

objective
deviation from setpoint concentration
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product to storage in step k

purge from storage in step k

+

=

+

=

=

− ×

⎧ ⎫−⎪ ⎪+ × ⎨ ⎬
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∑
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      (13) 
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Fig.7  Predictive control of the N2 concentration in the storage vessel 
 
 
The second term represents the net production of the oxy-
gen-rich product up to the end of the present Skarstrom 
step, plus the following two full Skarstrom cycles. The opti-
misation considers all constraints up to the end of the first 
cycle, but the second cycle, using the same step-lengths as 
the first cycle, only contributes to the objective function. It is 
reasoned that such constraint transgressions as may be 
implied in the second cycle should be small. At the start-up 
the contents of the storage vessel are at 20% N2. The set-
point is initially at 10% N2, stepping up to 20% N2 at time= 
7000 s, and back to 10% N2 at time = 14000 s. 
 
Figure 7 shows how the Skarstrom cycles are manipulated 
in order to achieve the desired concentration in the storage 
vessel. In this example, the storage vessel has a constant 
molar inventory and the objective function encourages a 
high production rate. The objective function is easily altered 
for the case of “level control” in the storage vessel, where 
users are drawing the product at arbitrary rates. Viewing 
figure 7 one recalls that the bottom material in the adsorber 
only proceeds to the storage vessel during the adsorption 
phase - ie where downflow occurs through the adsorber at a 
steady high pressure. Clearly the algorithm is manipulating 
the bottom concentration during this phase in order to prog-
ressively bring the storage vessel contents towards the 
setpoint.  

Conclusion 

In order to make use of fast and robust observation and 
optimisation algorithms, a lot of effort went into finding an 
adequate linear representation of the pressure swing ad-
sorption process. This required careful choice of typical flow 
and composition profiles for each of the four steps of the 
Skarstrom cycle, to act as operating points about which the 
linearisation could be conducted. 
 

The distinct steps of the Skarstrom cycle presented an unu-
sual predictive control problem. At any point in time, the 
optimal control must be based on completion of the present 
step, followed by a continuation of the Skarstrom sequence 
up to a defined horizon. The four steps of one cycle have 
different positive, negative or zero cost implications for the 
objective function. Possible “end-effect” bias was reduced 
by continuing with whole Skarstrom cycles up to the horizon. 
Two whole cycles proved adequate, of which only the first 
was subjected to the constraints. 
 
The optimisation problem was perceived to be hybrid in 
nature, so the initial approach was to formulate it entirely in 
the mixed logical dynamical (MLD) framework as a mixed 
integer dynamic optimisation (MIDO) problem. To handle 
the choice of the dynamic equations, however, this required 
the introduction of many constraints which slowed the solu-
tion down and made it unreliable. Far better performance 
was achieved by solving the combinatorial problem (residual 
step length, plus next four step lengths) directly by exhausti-
ve interrogation of all combinations for constraint complian-
ce and objective value. 
 
Example applications so far have focused on production 
maximisation and product composition control in an over-
flow-type receiving vessel. Good potential was found for 
predictive control of the composition by manipulation of the 
Skarstrom cycles. Indeed, this type of automatic control 
promises significant benefits, as the necessary control mo-
ves are not intuitively obvious for manual control. In future 
work the problem of combined composition and level control 
will be considered, so that users can draw product from the 
storage vessel at arbitrary rates.  

49AT&P journal  PLUS2 2009

MODEL PREDICTIVE CONTROL



References 

[1] LATIFI M.A., SALHI D. AND TONDEUR D. : “Optimisa-
tion-based simulation of a pressure swing adsorption pro-
cess, Adsorption (In print) (2008) 
 
[2] JIANG L., BIEGLER, L.T. AND FOX V.G. : “Design and 
optimisation of pressure swing adsorption systems with 
parallel implementation”, Computers and Chemical Enginee-
ring 29, 393-399 (2005) 
 
[3] KVAMSDAL H. M. AND HERTZBERG T. : “Optimisation 
of pressure swing adsorption systems - the effect of mas-
stransfer during the blowdown step”, Chemical Engineering 
Science 50, 1203-1212 (2005) 
 
[4] BITZER M. AND ZEITZ M. : “Design of a nonlinear distri-
buted parameter observer for a pressure swing adsorption 
plant”, Journal of Process Control 12, 533-543 (2002) 
 
[5] BITZER M. AND ZEITZ M. : “Process control scheme for 
a 2-bed pressure swing adsorption pllant”, European Sym-
posium on Computer Aided Process Engineering - 12, J. 
Grievink and J. van Schijndel (Editors), Elsevier Science 
(2002) 
 
[6] BITZER M. : “Model-based nonlinear tracking control of 
pressure swing adsorption plants”, in T. Meurer, K. Graichen 
and E.D. Gilles eds.: Control and Observer Design for Non-
linear Finite and Infinite Dimensinal Systems, Lecture Note 
in Control and Information Systems, Springer, (2005) 
 
[7] BEMPORAD A. AND MORARI M. : “Control of systems 
integrating logic, dynamics and constraints”, Automatica 35, 
407-427 (1999) 
  
[8] MORARI M., BEMPORAD A. AND MIGNONE, D. : “A 
framework for control, state estimation, fault detection and 
verification of hybrid systems”, Automatisierungstechnik 48, 
1-8 (2000) 
 
[9] MORARI M. : “Hybrid system analysis and control via 
mixed integer optimisation”, Chemical process control VI, 
AIChE Symposium Series No.326, Vol. 98 (2002) 

Professor Michael Mulholland  

University of KwaZulu-Natal 
School of Chemical Engineering 
King George V Avenue 
Durban 4041 
South Africa 
Tel.: +27-31-2603123 
Fax: +27-31-2601118 
E-mail: mulholland@ukzn.ac.za 

Professor M.A. Latifi  

Laboratoire des Sciences du Génie Chimique (LSGC) 
ENSIC-INPL 
1 rue Grandville  
54001 Nancy Cedex  
France 
Fax: +33 3 83 17 53 26   
E-mail: latifi@ensic.inpl-nancy.fr 
 

50AT&P journal  PLUS2 2009

MODEL PREDICTIVE CONTROL



Constrained NMPC Using         
Polynomial Chaos Theory 

T. L. Aliyev, E. P. Gatzke 

Abstract 
Establishing an accurate model of a multivariable nonlinear process with uncertain 
parameters can be difficult. Application of control methods based on nonlinear opti-
mization may result in sub-optimal performance due to changes in the parameters. 
This paper presents a new control method to handle parametric uncertainty through 
incorporation of a Polynomial Chaos Theory (PCT) model used in a constrained 
Nonlinear Model Predictive Control (NMPC) formulation. Uncertain parameters are 
treated as random variables with a uniform distribution. PCT expresses the entire 
uncertain process by a complete and orthogonal Legendre polynomial basis in terms 
of random variables where expanded process outputs are determined by applying 
Galerkin projection onto the polynomial basis. NMPC formulation has the ability to 
apply hard input and soft output constraints to maintain the process within specified 
bounds. It is shown that the proposed formulation can be applied with an adequate 
tuning to minimize the effect of parametric uncertainty on the process outputs.   

1. Introduction 

Parametric uncertainty affects the quality of a process 
model and as a result brings in significant challenges for 
process control engineering, design and analysis. Different 
methods have been used to better analyze and simulate the 
uncertain systems: Monte Carlo and other statistical meth-
ods, Taylor expansion of the random variables, worst cases 
scenarios and qualitative analysis of prediction algorithms 
[12]. While some of these methods are expensive and re-
quire parallel simulations to obtain the full statistics after 
each time step [11], and others are related to artificial intelli-
gence and the field of decision making not currently appli-
cable for large-scale engineering applications, Polynomial 
Chaos Theory (PCT) is a deterministic method that is capa-
ble of calculating the entire statistics of each uncertain vari-
able during only one simulation. PCT analysis that includes 
polynomial expansion of the uncertain variables results in a 
multivariable system while the statistical information re-
quired for reconstruction of the original variables is stored in 
the form of coefficients in the basis spanned by the polyno-
mials.  
Model Predictive Control (MPC) refers to a class of control 
algorithms in which a dynamic model of the plant is used to 
predict and optimize the future behavior of the process 
[7,16]. At each control interval, the MPC algorithm computes 
a sequence of the manipulated variables to optimize the 
future behavior of the plant. MPC has been used extensively 
for control of refinery operations since MPC can accommo-
date multivariable systems, actuator constraints, and eco-
nomic objectives. The original linear MPC method has been 
extended to include control of nonlinear dynamic systems by 
a variety of authors [5,23,9,6,13,1,19,4]. Use of more accu-
rate nonlinear process models potentially results in im-
proved controller performance but also requires solution of a 
more difficult nonlinear optimization problem. Most commer-
cially available MPC technologies are based on a linear 
process model. For processes that are highly nonlinear, the 
performance of MPC based on a linear model can be poor. 
This led to the development of Nonlinear Model Predictive 
Control (NMPC) methods [2,8,5,4,13,20].  
Many of the current NMPC schemes are based on first prin-
ciples physical models of the process. However, in many 
cases such models are difficult to obtain, time-consuming 

and often not available. Process simulators can be used to 
obtain a nonlinear empirical mathematical model which is 
identified from input-output data [19]. While NMPC offers 
potential for improved process operation, the method also 
faces practical issues that are considerably more challeng-
ing than those associated with linear MPC. In particular, the 
problems associated with the nonlinear optimization routine 
that must be solved online at each sample period to gener-
ate the optimal control sequence. Guaranteed closed-loop 
stability of nonlinear systems using MPC based methods 
generally use a terminal state constraint [18,24,15] or some 
sort of backup control system that monitors convergence 
[17]. The nonlinearity of a refining process and multivariable 
interacting nature of such systems makes this class of proc-
ess attractive to nonlinear MPC methods [25,26].  
When implementing control on real multivariable chemical or 
petrochemical processes such as distillation or separation 
operations, it is essential to ensure that the process remain 
within established safety limits and that each product meet 
certain quality constraints and specifications. For control 
purposes, all safety constraints and product quality specifi-
cations provide a set of control objectives that must be satis-
fied. However, in situations where the process is character-
ized by limited degrees of freedom (due to input actuator 
saturation, nonsquare process with limited inputs) it typically 
becomes impossible for a controller to meet all control ob-
jectives. In these types of cases it is practically impossible 
for a controller to impose hard constraints on the process 
outputs. Direct incorporation of hard output constraints 
would generally lead to infeasibility in the optimization prob-
lem.  
Since constrained MPC requires the solution of an optimiza-
tion problem at each time step, the feasibility of that problem 
should be ensured. Use of a terminal state constraint to 
guarantee closed-loop stability can cause the nonlinear 
MPC optimization problem to become infeasible. If the 
online optimization problem is not feasible, then some con-
straints would have to be relaxed and the problem would be 
resolved. Determining the constraints one must relax in 
order to get a feasible problem with optimal deterioration of 
the objective function could be extremely difficult. A possible 
remedy to the problem is to consider prioritized soft con-
straints on process outputs by including a penalty term in 
the objective function.  
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The paper is organized as follows: first, Polynomial Chaos 
Theory is presented in Section 2. The proposed controller 
formulation is presented in Section 3 along with an explana-
tion of a methodology for handling output constraints. The 
case-study used in this paper is presented and discussed in 
Section 4. This work uses a two-tank model as a nonlinear 
case-study. Open-loop and closed-loop results are pre-
sented in Sections 5 and 6, respectfully, and conclusions 
are drawn in Section 7.   

2. Polynomial Chaos Theory  
Polynomial Chaos Theory (PCT) was first introduced in 
1938 by an American mathematician Norbert Wiener 
[28,29]. Wiener used Hermite polynomials to expand con-
tinuous uncertain variables into a stochastic space and 
represent the uncertainty in the form of probability distribu-
tion function (PDF). The approach used by Wiener was later 
broadened for the entire Askey scheme of orthogonal poly-
nomials and was renamed Wiener-Askey Polynomial Chaos 

[30]. Any continuous uncertain variable ( )X ω  can be 

generally described using Polynomial Chaos method as 
follows:  

( ) ( )( )∑
∞

=

=
0i

iixX ωξφω  (1) 

where ξ  represents random variables in terms of ω  with 
the type of probability distribution function suitable for the 
chosen polynomial basis iφ , and ix  are the coefficients of 
expansion for this uncertain variable. The infinite dimension 
of the polynomial space given in Equation 1 must be re-
placed for computational use by a finite dimension P :  

( ) ( )( )∑
=

=
P

i
iixX

0
ωξφω  (2) 

Note that P  equals the number of terms in the expansion 
starting from 0. In general, the number of terms P  needed 
to describe each uncertain variable in a PCT expanded 
model can be obtained using  

( ) 1
n k

P
n k
+ !⎛ ⎞

= −⎜ ⎟! !⎝ ⎠
 (3) 

where n  is the number of random variables iξ  and k  is 
the maximum order of the polynomial basis to be used. Two 
cases are analyzed in this paper and appear in the following 
subsections: a case of only one uncertain parameter and a 
case of two uncertain parameters, i.e. 1n =  and 2n = , 
respectively.   

2.1. Uncertainty in One Parameter 
For a process in which only one parameter is uncertain, 
Equation 3 becomes for 1n = :  

( )1
1

k
P

k
+ !⎛ ⎞

= −⎜ ⎟!⎝ ⎠
 (4) 

which corresponds to P k= . This means that the number 
of terms needed to deterministically represent the stochastic 
process equals the order of the polynomial expansion. As-
suming uniform distribution can choose Legendre polynomi-
als to be used for PCT expansion. The interval of orthogo-
nality for Legendre Polynomials is [-1, 1] and the weighting 
factor is 1. This translates into two inner product definitions 
and orthogonality conditions for Legendre polynomials ex-

pressed in terms of the 2 nd -order Kronecker delta function 

mnδ  and a 3 rd -order tensor C ijk , respectfully:  

 

( ) ( ) ξξφξφδφφφ djiijiji 1
1

1

2 ∫
−

=≡  (5) 

 

( ) ( ) ( ) ξξφξφξφφφφφ dC kjiijkkkji 1
1

1

2 ∫
−

=≡  (6) 

The orthogonality normalization factors 2
iφ  and 2

kφ  

that appear in Equations 5 and 6 can be found in Table 1 up 
to order 2. The first two terms (starting from 0) in the case of 
a second-order Legendre polynomial basis are obtained 

from Table 1: ( )0 1φ ξ = , ( )1φ ξ ξ= , and 

( )2
2 ( ) 0 5 3 1φ ξ ξ= . − , so that the full PCT expansion of 

a variable X  in the process model is expressed in the case 
of only one uncertain parameter and the second-order Leg-
endre polynomials by:  

( ) ( )135.0 2
210

2

0

−++== ∑
=

ξξξφ xxxxX
i

ii  (7) 

 

Order k Φk(ξ) 21
1 k dφ ξ−∫  

0 1 2 
1 ξ 2/3 
2 0.5 (3ξ2 - 1) 2/5 

Table 1. Legendre polynomial terms up to order 2 and 
orthogonality normalization factors in the case of only 
one uncertain parameter. 

Once all the variables in the system are expanded accord-
ing to Equation 2, the resulting expressions are substituted 
into the governing model equation to form a PCT expanded 
model equation. The latter may in turn be discretized using 
Galerkin projection [3,22] onto the polynomial chaos basis in 
Equation 2 and then expressed in terms of the coefficients 

ix , the Kronecker delta function ijδ  and the 3 rd -order 

tensor C ijk .  

The terms i j kφφ φ  or, alternatively, ijkC  can be calcu-

lated up to order 2 (total of 33 27=  terms) using Legendre 
polynomials and normalization factors from Table 1 above. 
The terms of a tensor ijkC  are presented for each combina-

tion of i , j , and k in Table 2 [2].  
 

k→ 0 1 2 

i→ 0 1 2 0 1 2 0 1 2 

j=0 1 0 0 0 1 0 0 0 1 

j=1 0 1/3 0 1 0 2/5 0 2/3 0 

j=2 0 0 1/5 0 2/5 0 1 0 2/7 

Table 2. Elements of the 3 rd -order tensor ijkC  
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Using the described procedure and the data presented in 
the tables above, the Polynomial Chaos Theory analysis 
results in a new expanded deterministic model of a higher 
order. In fact, if the original governing model consists of n  
differential equations, then the expanded model in the case 

of one uncertain parameter will consist of ( )1n k +  equa-

tions, where k  is the order of the PCT expansion. The 
resulting PCT expanded model does not include the random 
variables, and if presented in a state-space model, the 
states of the new model are the expansion coefficients ix  
from Equation 2.   

2.2. Uncertainty in Two Parameters 
For a process in which two parameters are uncertain, Equa-
tion 3 becomes for 2n = :  

( )2
1

2
k

P
k
+ !⎛ ⎞

= −⎜ ⎟! !⎝ ⎠
 (8) 

Using Equation 8 for a second-order polynomial basis, i.e. 
2k = , it is established that 5P = , which means that five 

terms are required in the PCT polynomial expansion in the 
form of Equation 2. Note that two random variables 1ξ  and 

2ξ  now need to be used to express the terms of Legendre 
polynomials. The terms up to order 2 appear in Table 3. The 
detailed PCT analysis of this case does not appear in this 
paper. However, the analysis is very similar to the one pre-
sented in this work.  
 

First Order, k = 1 Second Order, k = 2 
Φ0  = 1 Φ3 = ξ1 ξ2 

Φ1 = ξ1 Φ4 = 0.5 (3ξ1
2 - 1) 

Φ2 = ξ2 Φ5 = 0.5 (3ξ2
2 - 1) 

 Table 3. Legendre polynomial terms up to order 2 and 
orthogonality normalization factors in the case of two 
uncertain parameters. 

3. NMPC Handling Soft Constraints  
For a continuous nonlinear state-space model of the form  

( ) ( ) ( )( )

( ) ( ) ( )( )

dx t f t x t u t
dt

y t h t x t u t

= , ,

= , ,

 (9) 

a general nonlinear discrete time dynamic model with M 
past input terms, un  inputs, yn  outputs, move horizon of 

m, and prediction horizon of p, is formulated according to:  

( )
1

1
( ) ( ) ( )

un k M

j j i i
i l k

y k M l g u lα
+ −

,
= =

⎡ ⎤+ = ⎣ ⎦∑ ∑  (10) 

along with a constant output disturbance term as:  

[ ]1
( ) Model

j j jk p
y k y d

∈ ,
= +  (11) 

In equation 10, coefficients ( )j i lα ,  relate output j to a 

general nonlinear input term ( )( )ig u l  at each time l. In 

Equation 11, Model
jy  is the model of output j  using the 

discrete representation in the form given in Equation 10, 
( )jy k  is a predicted value of output j at time k, and the 

disturbance update d j  is defined as:  

(0) (0)Model Meas
j j jd y y= −  (12) 

where for each output j, ( )Model
jy k  is the model value at 

the current time 0k =  and ( )Meas
jy k  is the process 

measurement at the current time 0k = . In this model, 

values for iu  before time 0k =  are known and values for 

times greater than 1m −  are fixed to ( 1)u k m+ − . This 
formulation chooses a sequence of input moves over the 
move horizon (m) that minimizes a 2-norm cost function. A 
2-norm is used in the MPC objective function in this work to 
avoid performance issues associated with the 1-norm for-
mulations [21]. The 2-norm objective function with soft con-
straints takes the form: 

( ) ( )2 2

1 1 1 1
( )( )

y un np m

y j u i ij
j k i l

u le kφ , ,
= = = =

= Γ + Γ ∆∑∑ ∑∑  

( )2

1 1
( )

y

soft

n p

y j j
j k

s k,
= =

+ Γ∑∑  (13) 

 
where ( )je k  and ( )js k  are the values of error predicted 

for the thk  time step into the future for each output j. The 
error (e) is defined as  

[ ]1( ) ( ) ( )j p j sp jk pe k y k y k, ,∈ ,| = −  (14) 

where ( )sp jy k,  is the known setpoint value of output j at 

time k and ( )p jy k,  is the predicted value of output j at time 

k, updated based upon process model mismatch at the 
current time. The term iu∆  defines changes in input i ac-
cording to  

[ ]1( ) ( )i ik mu k u M k∈ ,∆ | = +  

( 1)iu M k− + −  (15) 
 
The soft constraint violation (s) is defined for those values of 
output j that are outside the range ( ) ( )l u

soft softy k y k⎡ ⎤, .⎣ ⎦L  For 

model predictions above the upper soft constraint limit, the 
soft constraint violation is defined as:  

[ ]1( ) ( ) ( )u
j p j soft jk ps k y k y k, ,∈ ,| = −  (16) 

For violation below the lower soft constraint limit, this viola-
tion is defined as:  

[ ]1( ) ( ) ( )l
j soft j p jk ps k y k y k, ,∈ ,| = −  (17) 

The soft constraint violation is zero otherwise. This allows 
for violation of output constraints without making the control-
ler optimization problem infeasible. y j,Γ , u i,Γ  and 

softy j,Γ  

are weighting factors used to define the relative importance 
of each objective function term in Equation 13. However, 
penalty values must be tuned for this process using the 
weight in the softΓ  matrix. The term 

softy j,Γ  is an penalty 

on the output error that is applied depending on soft con-
straints on that output. Note that the value of 

softy j,Γ  is at 

least an order of magnitude larger than the maximum value 
of y j,Γ . This is done to ensure that soft constraint violations 

are minimized as much as possible.  
In some cases, there may be multiple output constraints. 
For example, a process may make multiple product types 
that are defined by the measured product quality. High profit 
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products must meet stringent quality limits while lower qual-
ity products may be sold at a lower cost. To implement this 
approach, based on deviation from the setpoint error in 
Equation 14, multiple layers of soft constraints with different 
penalties can be implemented. In this formulation, the value 
of the soft penalty 

softy j,Γ  in the objective function, Equation 

13, increases by order of magnitude with each additional 
layer, starting from a tight range (for errors less than or 
equal to some small value ε ) and ending with a broader 
loose range (for errors greater than 1.5ε , for example). The 
value of the quality range ε  as well as a penalty used for 
each layer of constraints can be adjusted to process needs 
depending on the output and the sign of the error in Equa-
tion 14, i.e. the constraint layers boundaries are not neces-
sarily symmetrical around the setpoint.  
Combining Equations 11, 12, and 14-17 results in a single 
objective function (Equation 13) that depends only on the 
input values. The resulting optimization problem becomes:  

min
l uu u u

φ
≤ ≤

 (18) 

The inclusion of soft constraints that are only active in por-
tions of the parameter space make the objective function 
nonsmooth. The convexity of the objective function φ  could 
be examined in detail.  
Optimization is implemented using fminsearch - multidimen-
sional nonlinear minimization - in Matlab. In MPC formula-
tions, the prediction horizon (p) can be chosen as a large 
value to promote stability. Stability can also be ensured 
through the use of a hard constraint which drives the termi-
nal state error to zero. This theoretical guarantee for nomi-
nal stability fails in cases where an unreachable setpoint is 
provided, as the optimization problem is infeasible [10]. In 
such cases, a soft constraint could be used to drive the 
system to a stable operating point when possible.  

4. Case study: Two tanks in series 
The case study analyzed in this paper is a simple two tank 
model described in Figure 1. The constant cross-sectional 
tank areas are 1A  and 2A , and the liquid heights are 1h  

and 2h , respectfully. There are two valves at the outlet of 

each tank whose coefficients are 2k  and 3k . The flowrate 

into the first tank is 1F ( )t , the flowrates from the tanks are 

proportional to the valve coefficients and the square root 
terms of the liquid levels through:  

( ) ( )

( ) ( )

2 2 1

23 3

F t k h t

F t k h t

=

=

 (19) 

 
The material balance around the system results in the fol-
lowing mathematical model:  

( ) ( ) ( )

( ) ( ) ( )

1
1 2 1

1

2
2 1 3 2

2

1 ( )

1 ( )

dh t
F t k h t

dt A

dh t
k h t k h t

dt A

= −

= −

 (20) 

 
It is worth noting at this point that in most complex chemical 
processes it is impossible for a mathematical model to fully 
represent all the aspects of the ongoing process operation. 
However, the nonlinear model given in Equation 20 is con-

sidered the most suitable representation of the two-tank 
model. Note that time dependency of all the variables was 
omitted in the model equation.  

A1

A2

122 hkF =

3 3 2F k h=

2h

1h

1F

 
  

Figure 1. Flowchart of two connected tanks with liquid 
levels h 1  and h 2 , cross-sectional areas A1  and A 2 . 

In order to effectively analyze the nonlinearity of the system, 

the square root terms ih  can be approximated using the 

Taylor series expansion in the neighborhood of the points 
0
ih :  

0
0 0 0 0 2

( ) 0
0

( )( ) ( ) ( )( ) ( )
2

( ) ( )

i
i i i i i i i

n
ni

i i

f hf h f h f h h h h h

f h… h h
n

′′
′= + − + −

+ −
!

 (21) 

 

where ( )i if h h= .   

4.1. Uncertainty in One Parameter 2k  

4.1.1. First-Order Taylor Approximation  
Using the first order Taylor series expansion given in Equa-

tion 21, the nonlinear square term ( )ih t  for any i  re-

duces to:  

( ) ( )0 0

0

1 ( )
2

i i i i

i

h t h h t h
h

= + −  (22) 

 

If 0
ih  is known, one can substitute Equation 22 into the 

model in Equation 20 so that the modified model becomes: 

( ) ( )

( ) ( )

01 2
1 2 1 10

1 1

2

0 0 32
2 1 1 3 2 20 0

2 1 2

( ) 1 1
2 2

( )

1 1 1
2 22 2

dh t kF t k h h t
dt A h

dh t
dt

kkk h h t k h h t
A h h

⎡ ⎤
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

=

⎡ ⎤
⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

 (23) 
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Since the first valve coefficient 2k  is the only uncertain 
variable, one can apply polynomial chaos expansion to the 
state variables 1h  and 2h , and the only uncertain parame-

ter 2k  to get:  
 
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )ξφξ

ξφξ

ξφξ

i

P

i
i

i

P

i
i

i

P

i
i

thth

thth

kk

∑

∑

∑

=

=

=

=

=

=

0
,22

0
,11

0
,22

,

,  (24) 

In this PCT expansion, ( )iφ ξ  (where ξ  is a random vari-
able with uniform distribution) can be chosen as Legendre 
polynomials for which the interval of orthogonality is [-1, 1] 
and the weighting function is simply 1, so that the first three 
Legendre polynomial terms (for P = 2) in the case of only 
one uncertain parameter as given in Table 1 are: 

0 ( ) 1φ ξ = , 1( )φ ξ ξ= , and 21
2 2( ) (3 1)φ ξ ξ= − . Now 

one can insert Equation 24 into Equation 23 to obtain:  
 

( )1 0
1 1 2

0 01

2 10
0 01 1

2 0
1 2

0 02

2 10
0 02 1

( ) 1 1( ) ( )
2

1 1 ( ) ( ) ( )
2

( ) 1 1( ) ( )
2

1 1 ( ) ( ) ( )
2
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i

i i i
i i

P P

i j i j
i j

PP
i

i i i
i i

P P

i j i j
i j
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F t h k
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k h t
A h

dh t
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k h t
A h

ξ
φ ξ φ ξ

φ ξ φ ξ

ξ
φ ξ φ ξ

φ ξ φ ξ

,
,

= =

, ,
= =

,
,

= =

, ,
= =

, ⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

, ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤
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⎢⎣ ⎦

∑ ∑

∑ ∑
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∑∑
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3 2 3 20

02 2

1 1 1( ) ( )
22

P

j j
j

k h t k h
A h

φ ξ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥,
⎢ ⎥=⎢ ⎥⎣ ⎦

⎥
⎥

− −∑

 (25) 

Applying the orthogonality condition given in Equation 5 and 
using a tensor notation from Equation 6 it is possible to 
discretize the PCT expanded model in Equation 25 using 
Galerkin projection onto the polynomial chaos basis in 
Equation 24 to get: 

{ }
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∫

 (26) 

This equation represents the PCT expanded two tanks 
model, where instead of two original model equations the 
expanded model now consists of 2( 1)k +  equations. It can 

be modified and rewritten in terms of a 3 rd -order tensor 

ijkC  and the Kronecker delta mnδ  using Equations 6 and 5, 

respectively:  
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∑

∫

∫  (27) 

A denominator 21
1 k dφ ξ−∫  in Equations 26 and 27 that 

accounts for orthogonality of Galerkin projection is given for 

k  up to order 2 in Table 1. The terms i j kφφ φ  or, alterna-

tively, ijkC  can be calculated using the inner product defini-

tion in Equation 6. These terms are summarized in Table 2.  
In the first part of the resulting PCT expanded model (Equa-

tion 27) a term ( )
1

11 kF t dφ ξ
−∫  contributes only when 

0k =  due to the properties of Legendre polynomials. For 
this simplest case of zero-order, the resulting model consist-
ing of two differential equations is:  
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( )1 0 0
1 2 0 1
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2 0 1 00
1 1

2 0 0 0
2 0 1 3 2

2

2 0 1 0 3 2 00 0
2 1 2
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1 11 ( ) ( )
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, ,
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, ⎢ ⎥

⎢ ⎥,
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, , ,

= −

⎡ ⎤
− ⎢ ⎥

⎢ ⎥⎣ ⎦

= −

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦

 (28) 

For this zero-order model, 000 1C =  was used. The result-
ing first-order PCT expanded model consists of four differ-
ential equations with up to 1P =  terms in each. Using the 
values of ijkC  for 0k =  and 1k = , one can obtain from 

Equation 27:  
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( ) ( ) ( )
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 (29) 

Equation 29 can also be rewritten in a state-space form:  
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

PCT
PCT PCT

PCT PCT

PCT PCTPCTPCT

d tx
A t tx

dt
B t u t

t C t t D t u ty x

=

+ +Γ
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 (30) 

where ( ) ( ) ( ) ( ) ( )1 0 1 1 2 0 2 1

T

PCT t h t h t h t h tx , , , ,⎡ ⎤= ⎣ ⎦  is a 

vector of expanded states,   

and ( ) ( )PCTPCT
y t tx=  is the output vector that includes 

all the expanded states.  
Matrices PCTA , PCTB , PCTC , PCTD  and PCTΓ  can then 
be identified as follows: 
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 (34) 

The second-order PCT expanded model consists of six 
differential equations with 2P =  terms in each.  
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 (35) 

 

4.1.2. Second-Order Taylor Approximation 
Using the second order Taylor series expansion given in 

Equation 21, the nonlinear square term ih  for any i  

reduces to: 
20 0 0
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1 1( )
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 (36) 

If 0
ih  is known, can substitute Equation 36 into the model in 

Equation 20 so that the modified model consisting of two 
differential equations becomes: 
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 (37) 

This model can be simplified into  
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 (38) 

Here, again set the valve coefficient 2k  as the only uncer-
tain variable. At this point one can apply polynomial chaos 
expansion to the state variables 1h  and 2h , and the uncer-

tain parameters 2k  to obtain the same PCT expansion as in 
Equation 24. However, the model in Equation 38 that was 
obtained using Taylor approximation up to second order, 
now includes nonlinear multiplication of three variables: 

2 1 1k h h  and 3 2 2k h h , respectively. Now, by inserting Equa-
tion 24 into the model in Equation 37, or in other words 
presenting the model using Legendre polynomials ( )iφ ξ , 
yields:  
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Now a 4th -order tensor notation should be introduced in 
addition to that in Equation 6:  

2
i j l k k ijlkDφφ φφ φ≡  (40) 

where an inner product is defined for Legendre polynomials 
with weighting factor 1 according to:  

1
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∫

 (41) 

In Equations 6 and 40, ijkC  and ijlkD  are 3rd  and 4th -

order tensors, respectively, that can be determined based 
on the knowledge of Legendre polynomial terms iφ .   
At this point it is possible to discretize the PCT expanded 
model in Equation 39 using Galerkin projection onto the 
polynomial chaos basis in Equation 24 to get: 
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Equations 42 and 43 represent the PCT expanded nonlinear 
two tanks model, where instead of two original model equa-
tions the expanded model now consists of 2( 1)k +  equa-
tions. These equations can be modified and rewritten in 
terms of a 3rd -order tensor ijkC  , a 4th -order tensor 

ijlkD , and the Kronecker delta ikδ  using Equations 6, 40 

and 5, respectively:  
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 (44) 

A denominator 
1

2

1
k dφ ξ

−
∫  in Equations 42 and 44 that ac-

counts for orthogonality of Galerkin projection was given for 

k  up to order 2 in Table 1. The terms i j kφφ φ  or, alterna-

tively, ijkC  were also calculated up to order 2 (total of 
33 27=  terms) using Legendre polynomials and normali-

zation factors from Table 1. These terms appear in Table 2.  
The main difference between the PCT expanded model 
after applying a Galerkin projection that was developed in 
the previous section and given in Equation 27 and the one 
obtained for the second order Taylor approximation - Equa-
tion 44 - is the addition of the 4th -order tensor ijlkD . Its 

coefficients can be computed for different combinations of 
indexes i, j, l,  and k  using an inner product definition 
that was given in Equations 41 and 40:  

 
1

2

1

( ) ( ) ( ) ( )i j l k i j l k k ijlkd Dφφ φφ φ ξ φ ξ φ ξ φ ξ ξ φ
−

= =∫
 (45) 
whereas Legendre polynomials ( )iφ ξ  were presented in 

Table 1 for [0 2]i …= . It is, however, easier to use the fact 

that integration over an odd function under the limits [ 1 1]− ,  
always results in zero, which again eliminates all the tensor 
terms for which the sum ( )i j l k+ + +  is an odd number. 

Moreover, in cases when any one of the indexes i, j or l  

is zero, since 0 ( ) 1φ ξ = , using Equations 6 and 49 and 

choosing, for instance, 0j = :  
2 2

0i l k k ijlk i l k k ilkD Cφφ φφ φ φφφ φ≡ = ≡  (46) 

 
so that:  
 0 ijlk ilkfor j D C= : =
 (47) 
whereas the 3rd -order tensor coefficients ilkC  in Equation 
47 can be found in Table 2. In the first part of the resulting 

PCT expanded model (Equation 27) a term ( )
1

1
1

kF t dφ ξ
−
∫  

contributes only when 0k =  due to the properties of Leg-
endre polynomials. For the simplest case of zero-order PCT 
expansion, the resulting model consisting of two differential 
equations is:  

( )1 0
1 2 0 1 00

1 1

2
1 00

2 0 1 2 0 3
01
1

2 0
2 0 1 00

2 1

2
2 00 0

2 0 1 3 2 3 3
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2

30
2 2

( ) 1 3 ( )
4

( )1 3 1
8 8

( ) 1 3 ( )
4

( )1 3 3 1
8 8 8

1 3
4

dh t
F t k h t

dt A h

h t
k h k

A h

dh t
k h t

dt A h

h t
k h k h k

A h

k h
A h

,
, ,

,
, , ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

,
, ,

,
, ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

+ − +⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

+ − +⎢ ⎥
⎢ ⎥
⎣ ⎦

+ −
2

1 0
2 0 2 0 3

0
1

( )1( )
8

h t
t k

h

,
, , ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎣ ⎦

 (48) 

For this zero-order expanded model, 000 1C =  and 

0000 1D =  were used. Equation 48 can be analyzed as the 
PCT expanded system achieves steady-state. In this case, 
the derivatives of the expanded states will vanish which will 
result in two nonlinear equalities:  
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2

10
1 2 0 1 2 0 1 2 0 30 0

1 1

0 0
2 0 1 2 0 1 3 20

1

2 2

2 1
3 2 3 2 03 30 0 0

2 2 1

3 3 1 0
8 84

3 3 3
8 84
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ss ss

ss

ss ss
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h
F k h k h k

h h

k h k h k h
h

h h
k h k k

h h h

⎛ ⎞
⎜ ⎟
⎝ ⎠

, , , ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, ,

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− − + =

+ −

− + − =

 (49) 

Summing the two equalities in Equation 49 results in a more 
comfortable set: 

2

10
1 2 0 1 2 0 1 2 0 30 0

1 1

2

20
1 3 2 3 2 3 30 0

2 2

3 3 1 0
8 84

3 3 1 0
8 84

ss
ss ss

ss
ss ss

h
F k h k h k

h h

h
F k h k h k

h h

⎛ ⎞
⎜ ⎟
⎝ ⎠

, , , ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− − + =

− − + =

 (50) 

In both Equations 49 and 50, ( )1 1 0
ssh h t,= →∞  and 

( )2 2 0
ssh h t,= →∞  are the steady-state values of the 

states, and ( )1 1
ssF F t= →∞  is the steady state value of 

the input. The equalities that appear in Equation 50 are 
second order polynomials that can be easily solved using 
traditional methods for a known steady state input value 

1
ssF .   

The first-order PCT expanded model consists of four differ-
ential equations with up to 1P =  terms in each. Using the 
values of ijkC  and ijlkD  for 0k =  and 1k = , one can 

obtain from Equation 44: 
 

( )1 0
1 1 2 0 1 00

1

2
1 0 1 10

2 0 1 2 0 2 13 00
11

2
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2 0 2 13 3
0 0
1 1

2
1 1 1 1 1 1

1 2 1 2 03
0
1

( ) 3 ( )
4
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8 8 4
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24 12
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40 4
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⎜ ⎟
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+ − + 1 0
1 0

1

( )h t

h
,

 (51) 

 
For this first-order expanded model, coefficients 

1001 0101 0011 1D D D= = =  and 3
1111 5D =  were used 

based on Equation 47 and the values of corresponding 
coefficients ijkC  from Table 2. Higher order PCT expanded 

models can be developed in a similar way. They include too 
many terms to be included in this paper.   
Equation 51 represents a set of four nonlinear differential 
equations that can be presented in a general compact form:  
 

( ) ( ) ( )( )

( ) ( )( )

PCT
PCT PCTPCT

PCT PCTPCT

d tx f t tx u
dt

y t th x

= ,

=
 (52) 

 
The uncertain model given in Equation 51 can be initially 
analyzed for the simplest case of no uncertainty in the vari-
able 2k , i.e. 2 1 0k , = . For this case, Equation 51 is re-

duced to: 
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 (53) 

Moreover, if it is assumed that all the parameters are certain 
it would make sense to further simplify the model by elimi-
nating the states distribution terms by setting ( )1 1 0h t, =  

and ( )2 1 0h t, = , so that Equation 53 becomes  

( )1 0
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2
1 00
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2
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, , ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥

, , ,⎢ ⎥
⎢ ⎥, ,⎛ ⎞⎢ ⎥

⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,
, ⎛

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

+ − +⎢ ⎥
⎢ ⎥
⎣ ⎦

= + +
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h t
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 (54) 

which in turn is identical to the first-order PCT model given 
in Equation 48. Equation 51 can be analyzed for the steady-
state constraints. At steady state all the derivatives in Equa-
tion 51 must vanish which results in a set of four equality 
constraints in which the variables 1 0h , , 1 1h , , 2 0h , , 2 1h ,  are 

the values of the expanded states at steady state. Given all 
the constant parameters and the steady-state input value 

1F  the task of evaluating steady-state constraints for this 
first-order expanded PCT model reduces to solving a set of 
four second-order algebraic equations with four unknowns 

1 0h , , 1 1h , , 2 0h , , 2 1h , .   

5. Open-loop Results 
The original system model was introduced in Equation 20. 
To solve that model one needs to make sure that the sys-
tem is open-loop stable. The eigenvalues of the system 

given in Equation 20 are 2

11
k
Aλ = −  and 3

22
k
Aλ = − . To 

ensure open-loop stability, i.e. both eigenvalues less than 
1− , can select the following values for the parameters used 

in the model: 1 1A =  [units of area], 2 2A =  [units of 

area ], 2 3k =  [units of area
time ], and 3 4k =  [units of area

time ]. 
Substituting these values into the original model in Equation 
20, one gets:  

( )1
1 1

2
1 2

( ) 3 ( )

( ) 1 5 ( ) 2 ( )

dh t F t h t
dt

dh t h t h t
dt

= −

= . −

 (55) 

Equation 55 is an open-loop stable system of two nonlinear 
differential equations, for which one can assume zero initial 
states: 1 2(0) (0) 0h h= = . The steady-state values, 1 ssh ,  

and 2 ssh ,  can be easily obtained from Equation 55 using 

( ) 0idh t
dt = . For a steady state input value 1 12ssF =  [units 

of volume
time ] the result is: 1 16ssh =  [units of height], and 

2 9ssh =  [units of height]. To obtain the solution of the 
model in Equation 55, one can linearize the model with 
respect to steady state values as shown below using first-
order Taylor approximation.  

5.1. Zero-Order PCT Expansion 
The simplest zero-order PCT expanded model was derived 
earlier and is given in Equation 28. For the given problem 
with only one uncertain parameter 2k  it is expanded using 

Legendre polynomials up to order 0  according to:  

2 2 0 0 2 0( )k k kφ ξ, ,= =  (56) 

in which 0 ( ) 1φ ξ =  was introduced earlier in Table 1. A 

uniformly distributed (dimensionless) random variable ξ  
does not appear in the final expanded model given in Equa-
tion 29, and is only used for PCT expansion as was shown 
in the previous section. With analogy to the original problem 
where a parameter 2k  was assumed to have a steady state 

value of 3 , one can choose a mean value 2 0 3k , =  [units 

of area
time ]. Substituting this mean value together with all the 

other parameters into Equation 28, yields the following zero-
order PCT expanded model:  
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1 3 3 2( ) 2 ( )
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F t h t h
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h h
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, ⎢ ⎥
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,

, ,

= − −

=

⎡ ⎤
⎢ ⎥+ − −
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 (57) 

This zero-order PCT expanded model that assumes no 
distribution in the uncertain parameter 2k  depends on the 

starting points 0
1h  and 0

2h  that were used for Taylor ap-
proximation. Since this work addresses deviations from 
steady conditions, it is assumed that Taylor approximation 

applied around the steady state points 1
ssh  and 2

ssh  so that 

for a steady state input value 1 12ssF =  [units of volume
time ]:  

0
1 1

0
2 2

16

9

ss

ss

h h

h h

= =

= =
 (58) 

[units of height] and the Taylor approximation up to order 1 
in Equation 22 reduces to  

1 1

2 2

12
8

3 1
2 6

h h

h h

= +

= +

 (59) 

Now, if one inserts Equation 59 into the original nonlinear 
model in Equation 55, the latter becomes:  

( )1
1 1

2
1 2

( ) 1 3 ( )
2 8

( ) 3 1( ) ( )
16 3

dh t F t h t
dt

dh t h t h t
dt

= −

= −

 (60) 

Substituting the values from Equation 58 into Equation 57, 
yields:  

( )1 0
1 1 0

2 0
1 0 2 0

( ) 1 3 ( )
2 8

( ) 3 1( ) ( )
16 3

dh t
F t h t

dt

dh t
h t h t

dt

,
,

,
, ,

= −

= −

 (61) 

As expected, the two resulting models in Equations 60 and 
61 are identical, for in the simplest zero-order PCT ex-
panded case 0i ih h ,= . To obtain the solution of the linear 

model in Equation 60, can implement Laplace transform of 
each differential equation to get:  

( ) ( )

( ) ( )

1 1 1 1

2 2 1 2

1 3( ) (0)
2 8

3 1( ) (0)
16 3

s H s h F s H s

s H s h H s H s

− = −

− = −

 (62) 

Eliminating the initial conditions ( ) ( )1 20 0 0h h= =  Equa-

tion 62 is simplified to  

( ) ( ) ( )

( ) ( ) ( )( )

1 1 3
8

2 1 3 1
8 3

1 1
2

3 1
32

H s F s
s

H s F s
s s

=
+

=
+ +

 (63) 

where ( )iH s  and 1( )F s  are Laplace transforms in s-

domain of ( )ih t  and 1( )F t , respectively. Given a constant 

steady state input value 1 12ssF =  [units of volume
time ] and 

applying the inverse Laplace transform on Equation 63, one 
obtains the solution to the original (or zero-order PCT) lin-
earized model:  

3
8

31
3 8

1

2

( ) 16 16

( ) 9 81 72

t

t t

h t e

h t e e

−

− −

= −

= − +
 (64) 

Figure 2 shows the comparison between the original nonlin-
ear two tank model (blue) and the First-order Taylor ap-
proximated model (red).  
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Figure 2. Comparison between the original model and 
the First-order Taylor approximated model of two tanks. 

5.2. First-Order PCT Expansion 
The first order PCT expanded model was also derived ear-
lier and given in Equation 29. For the given problem with 
only one uncertain parameter 2k  it is expanded using Leg-

endre polynomial up to order 1 according to:  

2 2 0 0 2 1 1 2 0 2 1( ) ( )k k k k kφ ξ φ ξ ξ, , , ,= + = +  (65) 

in which 0 ( ) 1φ ξ =  and 1( )φ ξ ξ=  were introduced earlier 
in Table 1. Similar to the previous case of zero-order PCT 
expansion, where a mean value of 2 0 3k , =  [units of area

time ] 

was used, now a first-order distribution value of 2 1 0 3k , = .  

[units of area
time ] is being used to introduce disturbance around 

the mean value in the uncertain parameter 2k . The starting 
points for Taylor approximation are also chosen as in Equa-
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tion 58. Substituting all the values into Equation 29, yields 
the following first-order PCT expanded model:  

( )1 0
1 1 0 1 1

1 1
1 1 1 0

2 0
1 0 1 1 2 0

2 1
1 1 1 0 2 1

( ) 1 3 12 ( ) ( ) 12
2 4 40

( ) 1 3 3( ) ( ) 1 2
2 4 40

( ) 1 3 1 4( ) ( ) ( )
4 4 40 3

( ) 1 3 3 4( ) ( ) ( ) 1 2
4 4 40 3

dh t
F t h t h t

dt

dh t
h t h t

dt

dh t
h t h t h t

dt

dh t
h t h t h t

dt

,
, ,

,
, ,

,
, , ,

,
, , ,

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

⎡ ⎤= − − − .⎢ ⎥⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦

⎡ ⎤= + − + .⎢ ⎥⎣ ⎦

 (66) 

Equation 66 now consists of four differential equations (with 
assumed zero initial conditions) that can be solved using 
Matlab [14] as a function of the process input 1F . Equation 
66 can be rewritten in a state-space format presented in 
Equation 67 as:  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

PCT
PCT PCT

PCT PCT

PCT PCTPCT

PCT

d tx
A t tx

dt
B t u t

t C t ty x

D t u t

=

+ +Γ

=

+

 (67) 

where 

( ) ( ) ( ) ( ) ( )1 0 1 1 2 0 2 1

T

PCT t h t h t h t h tx , , , ,⎡ ⎤= ⎣ ⎦  is a 

vector of expanded states, and ( ) ( )PCTPCT
y t tx=  is the 

output vector that includes all the expanded states. Matrices 

PCTA , PCTB , PCTC , PCTD  and PCTΓ  are identified as 
follows:  
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⎜ ⎟−
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 (68) 
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 (69) 

 

1 0 0 0 0
0 1 0 0 0
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PCT PCTC D

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= , =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (70) 
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Figure 3. First-order PCT expanded model showing the 
states mean values and distributions for F1=12.  

Figure 3 shows the states mean values 1 0h ,  and 2 0h ,  and 

their respective distributions 1 1h ,  and 2 1h ,  as they achieve 

the steady state. At this point, it might be useful to apply the 
same disturbance to the original problem (with no applica-
tion of Polynomial Chaos Theory). This can be done in Mat-
lab.  
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Figure 4. The effect of uncertainty in the input parame-
ter k_2 for the original problem. 

Figure 4 shows the states 1h  and 2h  for two cases: the 

original problem of a constant value of a parameter 2 3k =  

[units of area
time ] (shown in blue) and the case when this pa-

rameter is subject to a random normal distribution of about 
10%  around its mean value (shown in red).   
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6. Closed-loop Results 
This section examines the closed-loop results for control of 
the two-tank model. Initially, NMPC control formulation was 
applied on the original two-tank model with uncertain valve 
coefficient 2k . The nonsquare 2 1x  control system is ex-
amined using NMPC controller formulation and the pro-
posed soft constraint methodology. The results appear in 
Figures 5 and 6. The fact that the original model used in the 
case-study for this work consists of two outputs and only 
one input makes it impossible for the controller to track all 
possible setpoints. Moreover, only certain ratio of the 
steady-state values can be achieved in this case. Therefore, 
the authors were more interested in analyzing the ability to 
apply soft constraints on the process outputs and thus en-
able safe operation within the bounds of interest even when 
a small disturbance is applied. By tuning the controller pa-
rameters such as penalties in the cost function it is possible 
to push the process into the desired region or make it track 
a certain setpoint if absolutely needed.   

6.1. NMPC with soft constraints on the process outputs 
applied on the original two-tank model 
Figure 5 shows closed-loop control of the original model 
with soft constraints on the outputs. This control operation 
used zero setpoint tracking penalties and equal soft con-
straints penalties for the two outputs. As can be observed 
from Figure 5 the controller is able to handle soft constraints 
on the outputs until a small disturbance hits the process at 
time 18t = . The disturbance causes the process to deviate 
from the previous bounds up until its removal. A smaller 
disturbance is then tested with the same setpoints and 
slightly enhanced soft constraints bounds on the outputs 
while the tuning is set to track the setpoint of the second 
output. The results appear in Figure 6. It follows from the 
plot that no deviation from the safety bounds is observed 
despite the disturbance being applied. It is worth noting that 
the uncertain parameter 2k  was simulated to randomly 
change within a small region around its steady-state value.  

 
  

Figure 5. NMPC with soft constraints on the process 
outputs with zero steady-state regulation penalty in the 
objective function. Observed no setpoint tracking and 
no soft-constraints violation until a small disturbance 
was applied and after its effect was removed.  

 
  

Figure 6. NMPC with soft constraints on the process 
outputs with a large steady-state regulation penalty on 
the second output in the objective function. Shown 
setpoint tracking and no soft constraints violation even 
when a small disturbance was applied. 

6.2. NMPC with soft constraints on the process outputs 
applied on the PCT expanded model  
As was described earlier in the paper PCT analysis when 
used for control purposes enables direct control of various 
components of the expanded model. In particular, a possible 
control tuning strategy when trying to decrease the effect of 
parametric uncertainty on the system’s performance might 
include an increased penalty on those components that 
represent uncertainty. The first-order PCT expanded two-
tank model with one uncertain parameter 2k , used with 
second-order Taylor approximation, was developed in Sec-
tion 4 and resulted in a dynamic nonlinear model with four 
states given in Equation 51. Two of the states represent the 
mean components of the original outputs while the other two 
indicate the deviation from the mean values. A 4 1x  control 
system is formulated for this expanded model with the feed 
into the first tank being the only manipulated input.  
Different control strategies can be implemented at this point 
by changing the tuning parameters. Obviously, for a given 
nonzero uncertainty in parameter 2k , based on the PCT 
analysis developed in the previous chapters it is practically 
impossible to completely minimize distribution components 
without shutting down the flow into the system. In general 
control problems of this type a hard input constraint can be 
used to eliminate this natural optimization solution. In order 
to fulfill the research goals of this work, the authors tried to 
implement a control strategy that enables to apply soft con-
straints on all the expanded outputs thus decreasing the risk 
of process deviation from the safety or economically rea-
soned bounds.  
Figure 7 represents the case for which the penalties in the 
cost function are tuned to maintain the mean components 
within certain bounds, while the components associated with 
uncertainty are unbound. Figure 8, alternatively, describes 
the case when only the distribution components are bound 
to certain limits. A comparison between the plots leads to a 
conclusion that it is possible to slightly decrease the uncer-
tainty in the outputs using the proposed control methodology 
without changing the parametric uncertainty of the system.  
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Figure 7. NMPC with soft constraints on the mean com-
ponent of process outputs using a first-order PCT ex-
panded model with one uncertain parameter 2k . 

 
  

Figure 8. NMPC with soft constraints on the distribution 
components of process outputs using a first-order PCT 
expanded model with one uncertain parameter 2k . 

7. Conclusions  
Polynomial Chaos Theory analysis can be effectively ap-
plied on nonlinear systems with uncertain parameters. The 
main advantage of using PCT in a time domain lies in the 
ability to analytically obtain the expanded solution in a single 
computational run. The expanded system increases the 
number of the original states in the system depending on 

the order of PCT expansion and the number of uncertain 
parameters, so that the resulting dynamic PCT expanded 
model provides outputs that represent mean and distribution 
components of the original states. Provided the original 
distribution of the random variables these components can 
be reorganized to represent the original states. The multi-
variable expanded solution can be used along with the pro-
posed Nonlinear Model Predictive Control formulation to 
control the individual outputs of the PCT expanded model. 
The use of NMPC controller can decrease the sensitivity of 
the model to changes in the uncertain parameters by apply-
ing large penalties in the cost function on those components 
that represent uncertainty. Application of soft constraints on 
the PCT expanded process outputs enables safe operation 
within certain bounds.   
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Flight recovery system  

Pavel Hospodář, Martin Hromčík 

Abstract  
Primary task of an automatic recovery system is to solve a situation when a pilot 
loses orientation. This space disorientation happens when there is a variance of 
angle position between what pilot thinks and real physical angle position of the air-
plane. This situation occurs firstly in case when the pilot cannot see the horizon (by 
low or zero visibility, during a night flight over monotonous terrain without distinct 
segmentation, when wrongly reading/failure of position indicators, with disturbance 
of the pilot and losing concentration under high pressure e.g.). 

Keywords: automatic control, disorientation, θ-Φ diagram, MPC 

 

Introduction  

Main reason of disorientation is the fact that human sen-
sors of angular velocity (inner ear – semicircular channels) 
are insensitive to angular speeds under 2°/s. If the pilot 
does not have visual information this insensitiveness is 
integrating and becoming a drift. This drift leads to lose 
bearings. Automatic recovery system can stabilize the 
plane without involving the pilot and bring it to slightly 
climbing flight. Then the system hands over the control 
back to the pilot. 
 
This whole procedure has a few limit factors. Above all it is 
a marginal angle of attack and sideslip angle (separation of 
the streamline from the profile – aerodynamic limitation), 
maximum pitch and roll rate (mechanical limitations of the 
plane), maximum folds in particular directions (physiologi-
cal pilot protection) and a control limit (maximum helm 
deviation and maximum velocity of position change). On 
this account was a model predictive control (MPC) method 
chosen. 

Superior decision level for MPC is a θ- Φ diagram. Dia-
gram defines the procedure of controlling the plane in vari-
ous plane positions. In dependence on its position angles it 
determines next control/motion of the plane.  

1. Flight model 

Flight motion characteristic is described by moment and 
force equations with six degrees of freedom [4][5]. These 
equations are strongly nonlinear due to influence of aero-
dynamic coefficients and describing these equations is very 
complicated. For control purposes it is preferred to use 
particular working point (airspeed, altitude, mass of aircraft, 
angle of attack ...) then linearize the model and store the 
result in state-space form [1]. 

State-space model 

We have separated the model to longitudinal and lateral 
motion. State-space model used for control is derived from 
motion of training aircraft L-39. Original separated longitu-
dinal and lateral motions are fused together and supple-
mented with equation of altitude and vertical speed [2]. 
Altitude equation is derived from vertical speed ( h& ) which 

is directly depending on air speed (V), angle of attack (α) 
and pitch angle (θ): 

( ) zz uVuVh +−=+= αθγ sinsin&
 (1) 

If we suppose small fly path angle γ, we can write goniom-
etric dependence1 sin(γ)≈ γ    

( ) zz uVuVh +−=+⋅= αθγ&
 (2) 

where uz is wind disturbance. If we integrate last equation, 
we get altitude equation with initial condition H0. States 
matrix is supplemented of altitude equation and output 
matrix is supplemented of vertical speed equation. 

2. Model predictive control 

This is a type of control which uses optimal state-feedback 
and predictive strategy for optimal design sequence of 
control action with reference to future states and outputs of 
system[3]. Discrete model is described as follows: 
 
( ) ( ) ( )

( ) ( ) ( )kuDkxCky
kuNkxMkx

⋅+⋅=
⋅+⋅=+1

 
(3) 

We search for control sequence u(k) on the prediction 
horizon with length Tp which minimizes following criterion: 

( ) ( ) ( )[ ] ( ) ( ){ }∑
−

=

+−=
1

0

22
T

t

tutrtwtytqJ
 

(4) 

Where q(t) and r(t) are weights of regulation deviation and 
control action, w(t) is referential signal. Horizon of predic-
tion is a time after which we find optimal control sequence. 
We specify the prediction of outputs as system response 
on the prediction horizon Tp: 

                                                           
1 This form true only for angle lower than 5° 
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(5) 

 
We can write this equation in matrix form: 

( ) kkkk uSyuSkxVy ⋅+=⋅+⋅= ~
 (6) 

Where ky~  is system response to initial condition x(k) and 
S.uk is system response to control sequence on horizon of 
prediction Tp. We establish this equation to the scalar crite-
rion:  

( )( ) ( ) ( )
k

T
k

kkk
T

kkkkk

Ruu

wuSyQwuSywkxuJ

+

−⋅+−⋅+= ~~,|

 (7)
 

 
Matrix Q defines weight of regulation deviation and matrix R 
defines weight of control values. Vector wk is reference 
sequence on prediction horizon. We can weigh only ampli-
tude of inputs with this criterion formulation. If we want to 
weigh input change ( ) ( ) ( )1−−=∆ kukuku  we must modify 
previous criterion to the following form: 
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where:  
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We obtain following form if we substitute previous equation 
to the equation (8): 
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Constant c describes all variables which don’t depend upon 
vector uk and haven’t influence on optimization criterion. It 
is used quadratic programming for criterion solving and 
minimization function has following form:  

( ) xfxHxxJ TT

x
+=

2
1minmin

 
(11) 

Where matrix H and vector f are equal: 

( ) ( ) k
T
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+=

 

(12) 

Constraints of  inputs/outputs 
In light of limitations it is suitable to solve MPC regulation 
problematic by quadratic programming in terms of limiting 
particular parameters of regulation. We can solve con-
straint equation as: A.x <= b, where x is optimal input vector 
on prediction horizon Tp. When determining maximal and 
minimal output values, we proceed as follows: 
 

maxmin )( YkyY ≤≤
 ( ) maxmin YuSkxVY k ≤⋅+⋅≤  (13) 

 
We obtain finally inequality for output constraint only by 
simple translation:  
 

( )kxVYuS k ⋅−≤⋅ max
 ( )kxVYuS k ⋅+−≤⋅ min  (14) 

 
We can formulate input constraint: 
 

maxmin uuu k ≤≤  
maxuuk ≤  (15)

 
minuuk ≤−  

 
As next we define inequality for change of input constraint 
as: 

max
1

min du
T

uudu
s

kk ≤
−

≤ −
 

1max −+⋅≤ ksk uTduu  (16) 

1min −−⋅−≤− ksk uTduu  
  
We can write whole inequality for constraint of optimal 
predictive control in matrix form: 
 

bxA ≤⋅
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(17) 

 
Where n is order of the system and Ts is sample period. We 
can count matrix A, from previous equation, at the begin-
ning of control, during control process it remains the same. 

On the contrary it has to be counted limitating factor b in 
every control step. Hereby is then proposed MPC regulator 
for linear model of aircraft motion with limited control mag-
nitude and output values. 
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3. Recovery control 

Until now we have not mentioned recovery control. In the 
concrete by which way/logic is recovery control leaded to 
stabilize the airplane. Such system logic can be preferably 
described by Φ-θ diagram. Location of the airplane is in 
every moment given by two values Φ (roll) and θ (pitch). 
Value of third position angle, heading, is not important for 
us in light of recovery control. Every such pair is repre-
sented by a point in Φ-θ diagram which is divided in sec-
tors. In every sector is defined which part of control acts 
are turned on, i. e. which acts are to be provided.  

Fig. 1 Φ-θ diagram 

 

Basic consideration is that the goal of recovery system is 
slightly climbing flight with zero roll. As next it is necessary 
to ensure primary rolling (roll change) at great Φ angles 
followed by simultaneous rolling and pitching (pitch 
change).  Reversely when recovering the plane with big 
initial pitch it it necessary to ensure pitching first. Then with 
lower value of pitch can be provided simultaneous rolling 
and pitching. This is show on figure 1. 

It is obvious that there are two marginal sectors. Firstly it is 
rolling sector where absolute roll value is greater than 90° 
and secondly pitching sector where absolute pitch value is 
greater than 80°. For pitch between -80° and 80° and roll 
between -90° and 90° applies synchronous rolling and 
pitching to zero mode. Finally for absolute values of eleva-
tion smaller than 20° is the airplane stabilized to zero roll 
and pitch of 10° to keep the airplane slightly climbing.  

Following function realizes Φ-θ diagram by examining the 
output predicted on the prediction horizon Tp. This is used 
to determine when the roll and pitch reaches requested 
angle.. For particular step is set the control from next sec-
tor. Here it is used control where we optimize value of 
actuating intervention when knowing requested reference 
in advance. This is set by Φ-θ diagram logic so that for 
green sector (only rolling) is pitch constant and reqest for 
roll is zero. For yellow sector (synchronous rolling and 
pitching) is reference for roll and pitch zero. And finally in 
red sector (slight climb) is roll reference zero and pitch 
reference 10°.  

4. Simulation 

In this paragraph is introduced example of simulation of 
control system where initial value of pitch is 85°, roll is 120° 
and heading is set to 45°. The airplane is then in almost 
vertical flight rewounded on the back. This can simulate the 
final phase of spiral during which the pilot lost orientation 
and the airplane goes spontaneously to spiral heading 
towards the ground thanks to unstable spiral mode. 

On the figure 2 is shown that maximal input magnitudes 
values were not overcome. Transition speeds of control 
surface deviation are in bounds set by us. Then it is to see 

that multiples, 
or more pre-
cisely mechani-

cal-
physiological 

limitations, are 
under limit 
values. Flight 
limit factors, 
such as angle 
of attack/yaw 
angle, are also 
in bounds. 
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Fig. 2 flight magnitudes during recovery 
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Fig. 3 flight magnitudes during recovery 
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Fig. 4 flight angles during recovery 

 

 
 
Fig. 5 path of flight 

From course of elevation it is obvious that change of roll is 
much faster than by pitch. This is caused partly by mass 
persistence in particular axes and partly by limited angle 
velocities. It is worth noticing that for change of pitch is 
firstly used maximal roll velocity which has to be then low-
ered due to limited angle of attack. 

Conclusion  

In this paper we have presented how to design MPC 
strategy to control a linear aircraft model with a su-
perior decision function. An advantage of MPC 
strategy is prediction ability of states and outputs 
and in dependence on prediction horizon we can 
optimize inputs for whole recovery maneuver. MPC 
for a nonlinear aircraft model will be a subject of 
future work.  
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Global optimization         
for parameter estimation      
of dynamic systems 

Radoslav Paulen, Miroslav Fikar, Michal Čižniar, M. A. Latifi 

Abstrakt 
This work deals with the problem of finding a global solution for parameter estima-
tion problem of a dynamic system described by a set of ordinary differential equa-
tions (ODE). Deterministic spatial branch and bound optimization algorithm is used 
to find the solution of problem. Upper bound is generated by sequential  approach to 
dynamic optimization problem. Lower bound is provided by a solution of convex 
relaxation of the original problem. Selected examples from chemical engineering are 
solved and the resulting solution is discussed. 

Keywords:  global optimization, convex relaxation, ODE, parameter estimation 

 
Introduction 

Human science is now so developed that the optimization 
problems became the part of daily life of every researcher, 
developer or designer in engineering, computational che-
mistry, finance and medicine amongst many other fields. 
This is especially true if we speak about parameter estima-
tion, when we must find the best possible representation of 
phenomena (processes) happening in real world, plant or 
apparatus. Due to the fact that processes are usually des-
cribed by set of differential equations, methods of dynamic 
optimization must be used to find (local) solution of optimi-
zation of these processes. For a number of years, resear-
chers have known that dynamic optimization problems en-
countered in chemical engineering applications exhibit 
multiple local optima. This property, which can be attributed 
to non-convexity of the functions participating in most che-
mical engineering models, implies that standard local opti-
mization methods will often yield suboptimal solutions to 
problems. Global optimization algorithms based on the de-
terministic approach such as generalized Benders decom-
position [2, 5, 6], branch and bound [1, 12, 13] and interval 
analysis [7, 11, 14] guarantee the finite ε-conver-gence 
(convergence to the global optimum in finite computational 
steps for a given finite error tolerance) and the global opti-
mality of the obtained solution. Spatial Branch-and-Bound 
(sBB) algorithms are the extension of traditional BB algo-
rithms to continuous solution spaces. They are termed “spa-
tial” because they successively partition the Euclidean spa-
ce where the problem is defined into smaller and smaller 
regions where the problem is solved recursively by genera-
ting converging sequences of upper and lower bounds to 
the objective function value. In this work a deterministic sBB 
global optimization algorithm is used for global dynamic 
optimization problems with set of first-order parameter de-
pendent differential equations in the constraints, where 
upper bound is obtained from solution of original dynamic 
optimization problem using sequential approach. A possible 
solution with simultaneous approach was described in uur 
previous work [3]. Lower bound is computed by solving the 
convex relaxed original problem with variable bounding 
proposed by [10]. Strategy of constant bounds is used in-
stead of affine or αBB bounds (proposed by [9]) due to its 
usefulness and relative simplicity. The main purpose of this  

paper is to demonstrate utilization of sBB global optimization 
algorithm, to apply successive way to obtain bounds on 
variables participating on convex relaxation of original prob-
lem and to solve chosen examples relevant to chemical 
engineering. 

1. Problem Statement 

In this section we describe original non-convex dynamic 
optimization problem. Its solution gives an upper bound for 
sBB algorithm. 

1.1 Dynamic Process Model 

The processes considered is described by the following set 
of first-order parameter dependent, typically non-linear, 
differential equations 

[ ]No ttItpptxtfx ,)),,(,( ≡∈∀=&   (1) 

where t ∈ I ⊂ R, denotes time as the independent variable 
and N is the number of points considered additionally to the 
initial point t0, p ⊂ Rr is the vector of parameters of the 
process, x ⊂ Rn stands for the vector of state variables. The 
function f is such that f : I x Rn x Rp → Rn. The solution x(t,p) 
of this set satisfies the initial condition 

)(),( pxptx oo =     (2) 

where the function xo is such that xo : R
r → Rn. 

1.2 Process Constraints 

Inequality constraints can be imposed at discrete time 
points, ti . These are point constraints of the form 

Nipptxg ii ,,1,00)),,(( K=≤   (3) 

where the functions gi, i=0,1,...,N, are such that gi : R
n ⅹ Rr 

→ Rsi. Of course any equality point constraint can be re-
placed by two inequality point constraints. Lower and upper 
bounds are imposed on the parameters p: 
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UL ppp ≤≤      (4) 

1.3 Objective Function 

The objective function for a dynamic optimization problem 
can be expressed in terms of the values of the state va-
riables at discrete points and of the parameters 

),,1,0;),,(( NipptxJ i K=    (5) 

The function J is such that J : Rn(N+1) ⅹ Rr → R. Integral 
terms that may appear in the objective function can always 
be eliminated by introducing additional state variables and 
equations in the set of differential equations. 

1.4 Dynamic Optimization Problem 

The formulation of the dynamic optimization problem studied 
is given by 
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The following assumptions are made on the properties of 
the functions in (6): 
• J(x(ti,p),p; i=0,1,...,N) is once continuously differentiable 

with respect to x(ti,p), i=0,1,...,N, and p on Rn(N+1) x Rr. 
• each element of gi(x(ti,p),p, i=0,1,...,N), is once continu-

ously differentiable with respect to x(ti,p) and p on Rn ⅹ 
Rr. 

• each element of f(t,x,p) is continuous with respect to t 
and once continuously differentiable with respect to x 
and p on I x Rn x Rr. 

• each element of xo(p) is once continuously differentiable 
with respect to p on Rr. 

• f(t,x,p) satisfies a uniqueness condition on I x Rn x Rr. 

The sequential approach is used for the solution of this 
dynamic optimization problem. The gradients with respect to 
p can be evaluated using the parameter sensitivities. These 
are given from the solution of the sensitivity equations [15, 
16]. Due to the generally non-convex nature of the functions 
used in the formulation of the dynamic optimization problem, 
the solution obtained using the sequential approach and a 
standard gradient-based NLP technique, is a local optimum 
and therefore provides an upper bound for the global opti-
mum solution. 

2. Convex Relaxation of Problem 

As it was mentioned before, BB algorithms are operating 
with concept of relaxations. In this sectionwe briefly describe 
a possible convex relaxation presented in [9] of the non-
convex dynamic optimization problem that was introduced in 
the previous section. The solution of this convex relaxation 
problem provides a lower bound for the global optimum of 
the non-convex problem. First, we reformulate the NLP 
problem (6) as 
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where x̂ is a vector of new added optimized variables and 
values of x(ti,p), i=0,1,...,N, are obtained from the solution of 
the IVP 
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2.1 Bounding Variables and Solution of IVP 

It is very useful and in many cases essential to have bounds 
on variables, which are participating in optimization problem. 
For case of problem (7) bounds on parameters p are user–
defined and bounds on variables xi can depend just on 
bounds of these parameters. Within the generation of 
bounds on xi, which will definitely replace the presence of 
dynamic information in (7), relaxation of dynamic information 
will be formed. The dependence of convex relaxations on 
variable bounds is a common feature of deterministic global 
optimization algorithms. Since state variables appear in the 
non–convex objective function and constraints, a method for 
the derivation of rigorous bounds on these variables at point 
ti, i=0,1,...,N, is needed. This issue can be resolved by gene-
rating bounds on the solution space of the dynamic system. 
Lower and upper parameter independent bounds can be 
determined for the solution x(t,p) of IVP (8) such that  

Itpppxptxx UL ∈∀∈∀≤≤ ],,[),(  (9) 

where the inequalities are understood component-wise. 
Considering the assumptions and theorem given in [9] it can 
be assumed that, if f is continuous and satisfies a unique-
ness condition on I0≡(t0, tN] x Rn x [pL, pU], then the solution 

)(tx and )(tx  of the following IVP satisfies 
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These IVPs provide a practical procedure to construct 
bounding trajectories for IVP (8) if the appropriate continuity 
and uniqueness conditions are satisfied. Natural interval 
extensions are used as inclusion functions [8]. 

2.2 Convex Relaxation of Dynamic Information 

The set of equalities in (7) can be written as two sets of 
inequalities 
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Their relaxation is given by 
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where x
(

denotes the convex underestimator of the specified 

function and x-(ti,p)=−x(ti,p). Thus, the function x
(

(ti,p) is a 

convex underestimator of x(ti, p) and the function -
−x
(

(ti, p) 
is a concave overestimator of x(ti,p). The generation of 
these under and overestimators is the most challenging step 
in the construction of the convex relaxation of the problem 
because no analytical form is available for x(ti,p). The con-
stant bounds are given by inequalities 

Nitxxtx iii ,,1,0)(ˆ)( K=≤≤        (13) 

These inequalities are valid convex underestimators and 
concave overestimators for x(ti,p) and therefore they can 
replace inequalities (12). These bounds do not depend on 
the parameters p themselves, but do depend on the bounds 
on p. 

2.3 Convex Relaxation of the NLP 

After underestimating the objective function and overesti-
mating the feasible region, the convex relaxation of the NLP 
problem (7) is given by 
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where J denotes the convex underestimator of the specified 
function, C denotes the set of additional constraints arising 
from the convex relaxation of non-convex terms of special 
types and w denotes the vector of new variables introduced 
by this relaxation. 

3. Examples 

The global optimization algorithm presented in [10] was 
implemented using MATLAB 6.5. To obtain the bounds on 
variables we used the constant bounds approach (see sec-
tion 2.2). This technique is relatively simple, but suitable for 
the examples solved in this work. Solution of NLP problems 
was found using function fmincon. It is an implementation of 
a general NLP solver, provided by the Optimization Toolbox, 
uses either a subspace trust region method, based on the 
interior–reflective Newton method, or a sequential quadratic 
programming method. The MATLAB function ode45 was 
used for the integration of IVPs. It is an implementation of a 
Runge-Kutta method based on the Dormand-Prince pair. 
The interval calculations needed were performed explicitly 
using interval arithmetic. Interval arithmetic computations 
are shown for each example. The three examples are pa-
rameter estimation problems in chemical kinetics modeling. 
All the case studies were solved on a workstation Dell Op-
tiplex GX250, 3 GHz Intel Pentium 4 CPU with 1GB RAM.  

3.1 Example 1: Irreversible Liquid-phase Reaction of  the 
First Order 

First example is a parameter estimation problem with two 
parameters and two differential equations as the constraints. 

It was published in [4] as well as in [9]. It involves a first-
order irreversible isothermal liquid-phase chain reaction. 

CBA kk →→ 21  

The problem can be formulated as follows: 
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where x1 and x2 are the mole fractions of components A and 
B, respectively. k1 and x2 are the rate constants of the first 
and second reaction, respectively. xi(tj) is the experimental 
point for the state variable i at time tj. The points used are 
taken from [4]. Applying the procedure defined by (9) leads 
to the expressions 
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which using the interval arithmetic calculation results in four 
bounding IVPs 
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Solutions of these ODEs represent a convex underestimator 
and concave overestimator of the relaxed problem solution 
space. The global optimization algorithm converged with the 
relative convergence criterion ε set to 1e-2. The global opti-
mum parameter found was k1=5.0035 and k2=1.0000 and 
the value of the objective function for the global optimum 
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parameter was equal to 1.1856e-6. 3436 iterations were 
necessary for convergence of the algorithm in 2632 
seconds. The experimental points and trajectories of state 
variables for global optimum are shown in Fig. 1. The upper 
bound calculation was performed once every 100 iterations. 
Results show that for this problem with simple dynamics and 
only two parameters, algorithm is efficient and quite fast 
while we need less than one hour to obtain a solution. This 
is because data were generated using integration of system 
with parameter values k = [5, 1] with no error added. 

 
Fig.1 Experimental points and state variable     

trajectories for the globally optimal         
parameters in Example 1 

3.2 Example 2: Catalytic Cracking of Gas Oil 

This example is a parameter estimation problem with three 
parameters and two differential equations in the constraints. 
It appears in [4] and [10]. It involves an overall reaction of 
catalytic cracking of gas oil (A) to gasoline (Q) and other 
products (S). 
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where x1 and x2 are the mole fractions of components A and 
Q, respectively. k1, k2 and k3 are the rate constants of the 
respective reactions. xi(tj) is the experimental measurement 
for the state variable i at time tj. The measurement points 
used are again taken from [4]. Applying the procedure de-
fined by (9) and using the interval arithmetic calculation 
resulted in following bounding IVPs 
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Solutions of these ODEs represent a convex underestimator 
and concave overestimator of the relaxed problem solution 
space. The globally optimal parameters are k1=12.2111, 
k2=7.9764 and k3=2.2259 with the corresponding value of 
the objective function equal to 2.655e-3, when convergence 
criterion is set to 1e-2. The experimental points and the 
state variable trajectories for the global optimum are shown 
in Fig. 2. Algorithm converged after 8497 iterations and 
13637 seconds of CPU time. The upper bound calculation 
was performed once every 100 iterations. In this example 
with non-linear dynamic system and three parameters to be 
estimated, rise of the computational effort is significant. This 
can be attributed to the higher complexity of the problem 
and also to small amount of random error added to the data 
integrated for parameters k=[12, 8, 2], which is evident from 
value of the objective function in optimum. 

 
Fig.2 Experimental points and state variable     

trajectories for the globally optimal         
parameters in Example 2 

3.3 Example 3: Reversible Liquid-phase Reaction of t he 
First Order 

The third example is a parameter estimation problem with 
four parameters and three differential equations. It appears 
in [4]. It involves a first-order reversible isothermal liquid-
phase chain reaction. 

CBA kk →→ 31  

ABC kk →→ 24  

The problem can be formulated as follows: 
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where x1, x2 and x3 are the mole fractions of components A, 
B and, C, respectively. k1, k2 and k3 are the rate constants of 
the first and second reaction, respectively. xi(tj) is the expe-
rimental point for the state variable i at time tj. The points 
used are taken from [4]. Applying the procedure defined by 
(9) leads to the expressions which using the interval arith-
metic calculation resulted in six bounding IVPs 
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Solutions of these ODEs represent a convex underestimator 
and concave overestimator of the relaxed problem solution 
space. The experimental points and trajectories of state 
variables for global optimum are shown in Fig. 3. Algorithm 
converged within the relative convergence criterion ε set to 
1e-2. Global optimum was found with parameter values 
k1=3.9990, k2=1.9981, k3=40.0000, k4=20.0007 and the 
value of the objective function for the global optimum para-
meter was equal to 1.1856e-6. Algorithm converged after 
44600 iterations and 142380 seconds of CPU time. The 
upper bound calculation was performed once every 100 
iterations. Despite that there was no random error added to 
integrated data for parameters k=[4, 2, 40, 20] and system 
with linear dynamic embedded was studied, there is an 
enormous increase of computational time needed (almost 2 
days). According to examples discussed previously the only 
explanation of this lies in augmented number of parameters 
together with extended parameter ranges. 

 
Fig.3 Experimental points and state variable     

trajectories for the globally optimal         
parameters in Example 3 

Conclusions  

Main purpose of this work was to present application of a 
global optimization algorithm suitable for parameter estima-
tion problems of dynamic systems. A deterministic sBB 
global optimization algorithm was employed. Local solutions 
produced using the sequential approach were used as an 
upper bound on the global minimum of the objective function 
value. Lower bounds were provided from the solution of a 
convex relaxation of the problem on subregions considered 
in the BB algorithm. This convex relaxation was achieved 
after defining a convex underestimation of the objective 
function and a convex overestimation of the feasible region. 
We implemented the algorithm proposed by [10] and used it 
to solve selected examples relevant to chemical engineer-
ing. The principle of constant bounds is very useful and also 
quite simple. Although there are some other few methods 
(affine bounds, αBB-bounds) already developed, we fo-
cused on this approach in the work. Explicit interval arith-
metic calculations were used and solution of IVP (9) was 
performed once at each node of BB tree. Results show that 
the method of constant bounds for larger problems results in 
enormous rise of the number of iterations and computational 
time needed to obtain the global optimum. These results 
suggest that future work should be focused on larger sys-
tems with utilization of different bounding strategies. 
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On-line neighboring-extremal 
controller design  
for setpoint transition  
in presence of uncertainty 

Marián Podmajerský, Miroslav Fikar 

Abstract 
In this paper we present an approach suitable for optimal constrained control of 
processes subject to uncertainties. The controller follows a nominal solution of 
dynamic optimisation problem given by a theoretical model which needs not to be 
very accurate. The nominal optimal control trajectory is identified as a sequence of 
arcs and boundaries. Real output measurements are used to cancel model 
mismatch and to augment nominal inputs on-line using state-feedback law. 
Neighboring-extremal controller is designed to follow the nominal output trajectory 
along interior arcs using necessary conditions for optimality (NCO).  Methodology 
will be implemented for setpoint-transition of van de Vusse reactor type. Finally, the 
performance of neighboring-extremal controller will be benchmarked using several 
perturbation scenarios. 

Key words: NCO-tracking, dynamic optimisation problem, neighboring-extremal, 
necessary conditions for optimality 

Introduction 

Batch and semi-batch plants are widely used in the industry 
and studied in academia for their non-linear behavior 
especially when consecutive and side reactions are 
presented. For these processes, the mathematical model is 
known with limited accuracy and controller design has to 
deal with variations. In the presence of model mismatches 
and uncertainties there are demands on advanced process 
control schemes. 

In the last decade, the approaches which deal with limited 
model accuracy and with highly nonlinear behavior have 
been addressed. The presence of uncertainty can be solved 
using multiple approaches: Linear-Quadratic-Gaussian 
control [19], NCO-tracking [7, 13, 14, 15], robust H∞ loop-
shaping [11, 19], adaptive control [16, 17], robust control [3, 
4] or whole process re-optimisation: NMPC [1, 2, 8]. Most of 
these methods incorporate direct output measurements or 
reconstruct them with observers. There is a difference in the 
controller design and the implementation: if design is 
performed on-the-fly or can be done off-line; or if main 
controller implementation is simple and can be applied on 
commonly used hardware in the industry. Next limitation for 
controllers which perform on-line is sampling rate, especially 
for NMPC where whole optimisation process must be 
repeated, or for LQG and for adaptive control where 
controller parameters are also updated at each sampling 
period. 

In this work, we apply NCO-tracking approach. Nominal 
optimal solution is used to calculate state-feedback gain 
matrices for state variations around the nominal trajectory. 
The augmented action is determined at each sampling time 
by adjustment of the nominal input profile with the pre-
computed gain and the actual difference between the 
measurements and the nominal output profiles. The 
implementation then consist of the storage of the nominal 

input, output profiles, and the gain matrices for state-
feedback at sampling periods in which the controls will be 
updated. In addition, a short sampling time allows to control 
the processes with the fast dynamic behavior. 

The proposed NCO-tracking controller is applied on 
setpoint-transition of van de Vusse reactor model [10] in 
presence of parameter and initial state variations. 

1. Theoretical Background 

1.1 Optimal control problem 

We assume the following dynamic optimisation problem with 
simple bound constraints: 

tttLtJ
ft

f dmin ∫+Φ=
0

)),(),(())(( θuxx  (1) 

s.t.  

0)0();),(),(( xxθuxFx == tt&  (2) 

UL t uuu ≤≤ )(  (3) 

where t  stands for the time variable, ft  the fixed time, u  
the control vector, x  the state vector with initial state 0x , 
θ the vector of uncertain time-invariant parameters, F  the 
system dynamics, J  the scalar cost function to be 
minimised, Φ  the terminal cost function, and L  integral 
cost function. All functions in (1)-(3) are assumed to be  
continuous and continuously differentiable with respect to 
their arguments. Then, there exists an unique optimal 
control solution ∗u  for given nominal parameter values θ . 
This solution may consist of several arcs: boundary arcs 
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(trajectories lie on the constraints) and interior arcs 
(trajectories within constraints). 

1.2 Necessary Conditions for Optimality 

According to [6], the Hamiltonian function H  is defined as 
follows 

)()()(

)()(

uuµuuµλθuxF

θuxµµλθux

−+−++

+=
UTULTLT

UL

,,

,,L,,,,,H
 (4) 

where λ denotes adjoint vector function given by 

)()(; fxfx
T
xx tt ΦλLλFHλ =−−=−=&  (5) 

The vectors and matrices with subscript x  denote partial 
derivatives of the corresponding variable with respect to 
state x . 

Lagrange multiplier vector functions are denoted by UL,µµ  
and satisfy following conditions 

0u0uuµ ≥=− LLTL ;)(  (6) 

0u0uuµ ≥=− UUTU ;)(  (7) 

Note that Lagrange multipliers are equal to zero 0µµ == UL  
along an interior arc, while they are non-zero 

},,1{,0 u
U

i
L

i ni K∈≠≠ µµ along a boundary arc. The first 
and second order necessary conditions of optimality for the 
problem described by (1)-(3) are of the form 

0; >=+−+= uu
ULT

uuu H0µµλFLH  (8) 

where the positive definite matrix 0>uuH  denotes the 
second partial derivative of H  with respect to control 
( )22 / u∂∂ H . 

1.3 Neighboring-Extremal Control  
for Nonsingular Problems 

Even a small disturbance in the model parameters results in 
changes of the optimal control trajectory fttt ≤≤∗ 0),(u .  Let 
us consider the first-order approximation for augmented 
optimal trajectory of a perturbed control 

)()()();( ζζδζ ouuu ++= ∗ ttt  (9) 

and use theory of neighboring extremal [6] for computing the 
correction uδ  in a such manner that the first-order variation 
of necessary conditions for optimality heads to zero along 
the augmented control )()( tt uu ζδ+∗ . The correction of uδ  
is computed as the solution to the variational LQ minimum 
problem [5, 9] 
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s.t.  

;θFuFxFx δδδδ θ
∗∗∗ ++= ux&  (11) 

0)0( xx δδ =  (12) 

∗∗ −≤≤− uuuuu UL tt )()( δ  (13) 

that corresponds to minimisation of the second-order 
variation of the cost functional subject to the linearised 
dynamics. A superscript ∗  (e.g. ∗

uuH ) means that the 
variable is evaluated upon nominal trajectories )(t∗u , )(t∗x , 

)(t∗λ , for ftt ≤≤0 . A perturbed optimal control );( ζtu  

exists in a neighbourhood of 0=ζ , provided that the LQ 
problem (10)-(13) itself has an optimal solution [12]. The 
control variation uδ  satisfying the strengthened Legendre-
Clebsch condition of positive definiteness 0Huu >

∗  and for 
unconstrained problems 0µµ == )()( tt UL  is then given by 
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u
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uu δδδδ ++−= − ttt T  (14) 

where )(tx  and )(tλ  satisfy the following two-point 
boundary-value problem (TPBVP) 
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Furthermore, a neighboring-extremal state-feedback law 
can alternatively be designed via backward sweep method 
[6], that assumes a linear relation between the state and 
adjoint variables and parameters θSxSλ θx δδδ )()()()( tttt +=  

)()()()( ttttu θKxK θx δδδ −−=  (20) 
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0Sθ =)( ft&  (26) 

It is implicitly assumed for constrained control sequence that 
the uncertainty is sufficiently small for the perturbed optimal 
control to have the same sequence of constrained and 
unconstrained arcs as the nominal solution. Neighboring-
extremal is  obtained similarly to unconstrained case: by 
solving either TPBVP or Riccati equation with possible 
discontinuities at junction times between constrained and 
unconstrained arcs. In practice, this assumption does not 
cause an apparent performance loss. 
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2. Design Example 

2.1 Plant Model 

We consider a chemical reactor with side and follow-up 
reactions of van de Vusse scheme [18], where desired 
cyclopentenol (B) is produced from cyclopentadiene (A) by 
acid-catalysed electrophilic addition of water in dilute 
solution. In addition, cyclopentanediol (C) is consecutive 
product of cyclopentenol (B) and addition of another water 
molecule, and dicyclopentadiene (D) is a side product of 
strong Diels-Alder reaction between the educt and the 
product. 

The plant model presented in [10] consists of material 
balances of the reactant (A) and the product (B) as well as 
energy balances of the plant and the cooling jacket as 
follows 

,)()()( 1
2

21 ucccTkcTkc AinAAA −+−−=&  (27a) 

,))(( 11 ucccTkc BBAB −−=&  (27b)  

,)()(),,( 1uTTTTTcchT incBAr −+−+= α&  (27c) 

2)( uTTT cc γβ +−=&  (27d) 

with reaction enthalpy given as 

]∆H(T)ck)∆Hc∆H(T)(cσ[k,T),c(ch ADABCBABABAr
2

21 ++−=  (28) 

and kinetic rate constants are expressed as Arrhenius 
functions of temperature in °C 

.2,1)(
,

15.273
0 == +

−
iekTk T

R
iE

ii  (29) 

We define states variables as [ ]TcBA TTcc=x . The 
model parameters are defined in Tab.1. 

The controlled inputs are input flow rate q  normalised by 

the volume of the plant RV  and cooling system capacity Q& . 
Both inputs are constrained in the form of lower and upper 
bounds 

1
1

1
1 355, −− ≤≤= huh

V
qu

R

 (30a) 

1
1

1
2 .0.8500, −− ≤≤−= hkJuhkJQu &  (30b) 

The product concentration and the plant temperature were 
chosen ascontrolled outputs 

., 21 Tycy B ==  (31) 

The aim of the optimisation problem is to drive reactor's 
operational conditions from the original steady-state to 
another operational point. The particular numeric values of 
states and inputs at the operational points are summarised 
in Tab.1. The transition is performed with several scenarios, 
whereby the desired stationary point is always reached 
without violating input constraints. Thus, the performance 
index is defined as LQ integral functional where the 
normalised tracking error variations between original and 
new stationary point are driven to zero in a finite time 

min20=ft . The cost function then reads 

∫ +=
ft
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Tab.1 Parameters for plant model and the 
main stationary setpoints 
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and matrices IQ  and IR  are positive-definite and 
symmetric weight matrices 
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2.2 Open-loop Optimal Control 

To find the optimal sequence of arcs, a numerical solution of 
dynamic optimisation problem (27)-(32) was obtained. We 
employed our in-house dynamic optimisation package 
based on CVP approach and implemented in MATLAB 
environment: SUNDIALS toolbox for the forward and 
backward numerical integration of differential equations and 
MATLAB version of SNOPT for NLP solution. For this 
particular case study, we parametrise both control inputs 
piecewise on 40 stages of equal width (30s). 
The optimal control profiles of more aggressive control 
scenario are depicted in the third and fourth graph in 
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Fig.1  More aggressive control with the perturbation 

scenario: 20%∆cin = , 20%∆k10 −= , 20%∆k20 −= . 
Dashed line: NCO tracking inputs; Solid line: 
optimal inputs to the perturbed problem; Dash-
dotted line: open-loop nominal inputs 

Fig.1 (dash-dotted line). We can see that 1u  starts on upper 
bound and 2u  on lower bound and then they are followed by 
an interior arc. Similarly, the optimal control profiles of less 
aggressive control scenario are depicted in the third and 
fourth image in Fig 3. Observe, that upper bound of 1u  and  
lower bound for 2u  are shorter and the interior arcs are 
longer compared to more aggressive scenario. Along the 
interior arcs the following necessary conditions (see (8)) 
must hold for 1u  and 2u  
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These equations give expressions for optimal control 
trajectories 
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Fig.2  Performance of NCO tracking with more 

aggressive control. Dashed line: C1, solid line: 
C2, dash-dotted line: C3, dotted line: C4 
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Note that optimal control trajectories *
1u  and *

2u  of the 
nominal problem are computed iteratively because adjoints 
become unstable during forward integration. The procedure 
is as follows. Dynamic process (27)-(29) is integrated 
forward, the controls are explicitly given from (38)-(39).  The 
unknown adjoint variables *λ  are taken from the nominal 
solution and then they are approximated during forward 
integration. Subsequently, in next iteration step λ  are 
corrected during backward integration. At final stage, 

ftλ  at 

final time must be equal to )( ftλ  given by the optimal 
problem. 
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Fig.3  More aggressive control with the perturbation 

scenario: 20%∆cin −= , 20%∆k10 −= , 20%∆k20 −= . 
Dashed line: NCO tracking inputs; Solid line: 
optimal inputs to the perturbed problem; Dash-
dotted line: open-loop nominal inputs 

2.3 Neighboring-extremal Feedback Control 

The standard approach of real-time optimisation consists of 
process model update using available measurements and 
followed by numerical re-optimisation that provides input to 
the plant. Instead of reoptimisation, the so called NCO-
tracking approach is used in this work. The main idea is 
based on the fact that optimality requires meeting necessary 
conditions for optimality. NCO-tracking secures optimal 
operation via feedback without solving dynamic optimisation 
problem in real-time. The objective of NCO-tracking is to 
find zero gradients and to meet active constraints in 
presence of uncertainty that can be model mismatch or 
process disturbances. This will be handled on-line via 
neighboring-extremal controller. 

2.3.1 NE controller design 

In the section 2.2 we did analysis of the optimal control 
profiles of more and less aggressive scenario and we found 
a sequence of boundary and interior arcs that apply to the 
open-loop solution of the problem (1)-(3).  Both inputs 
consist of a boundary arc followed by an interior arc, in more 
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Fig.4  Performance of NCO tracking with less 

aggressive control. Dashed line: C1, solid line: 
C2, dash-dotted line: C3, dotted line: C4 

aggressive scenario and of the one interior arc, in less  
aggressive scenario. The optimal inputs *

1u  and *
2u ) along 

the interior arcs, are given by (38)-(39). The switching times,  
between particular boundary arcs and interior arcs are taken 
from nominal solution. We assume that they are fixed and 
they are perturbated minimally. Only the interior arcs are 
updated in presence of uncertainty.  

The NE controller can be designed in two different ways (i) 
by solving TPBVP described by (15), (ii) by solving matrix 
Riccati equation (20). From both we get the gain matrices 

xK  and θK  that determine optimal control response. This 
drives the perturbed system towards original optimal output 
trajectory. 

2.3.2 Performance of NE controller 

To assess the performance of proposed NE controller two 
scenarios are studied: more and less aggressive control. 
Performance will be demonstrated with parameter 
uncertainty of inlet concentration inc , vector of initial 
conditions 0x , and kinetic rate constants 10k , 20k  that may 
vary in range of %20± . The weight coefficients are 121 == rr  
and state penalisation is 50021 == qq  for more aggressive 
and 20021 == qq  for less aggressive scenario, respectively.  
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The corresponding control and response for various 
coefficient disturbances can be found in Fig. 1-2 for more 
aggressive, and in Fig. 3-4 for less aggressive scenario. 
Note that open-loop nominal controller is clearly unable to 
deal with presence of uncertainties, the desired setpoint is 
not reached in any case. In contrary, proposed NCO-
tracking controller recovers influence of uncertainty  nd the 
reactor ends up at desired setpoint independent on 
controller aggressiveness. Same behavior can be observed 
in other simulations with various combinations of 
uncertainty, where the following cases were simulated: 

%10%,20:
%20%,10%,10:
%10%,20%,10:

%20%,10%,20%,20:

04

20103

20102

020101

=∆−=∆
−=∆−=∆=∆
=∆−=∆−=∆

−=∆=∆−=∆=∆

xc
kkc

kkc
xkkc

in

in

in

in

C
C
C
C

 

In these cases, optimality loss is fully recovered while the 
input constraints remain satisfied and performance follow 
closely copy the original one. 

Concluding Remarks 

Design of controller which tracks necessary conditions for 
optimality was presented and applied to the van de Vusse 
reactor model [10] with uncertainties which may occur under 
realistic conditions. The dynamic optimisation problem was 
transformed to the control problem through nominal input 
decomposition into sequence of boundary and interior arcs.  

Neighboring-extremal controller was introduced to track the 
necessary conditions for optimality along interior arcs. The 
nominal optimal control as well as state-feedback law were 
calculated offline for all variations of states and parameters 
and for a small neighbourhood around nominal trajectories. 
The simulation results shown in Fig. 1-4 confirmed 
attractivity of proposed solution whereas desired setpoint 
was reached and inputs were within limits for both more and 
less aggressive control criterion. Opimality loss was 
successfully recovered in resence of parameter 
uncertainties. The approach is well-suited especially for the 
real-time optimisation with short sampling times.  
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Control of a laboratory 
chemical reactor using 
robust PI controller 

Jana Závacká, Monika Bakošová, Katarína Vaneková 

Abstract 
The paper presents a method for design of robust PI controllers for systems with 
interval uncertainty. The method is based on plotting the stability boundary locus in 
the (kp, ki)-plane. Then parameters of stabilizing PI controllers are determined. The 
designed robust PI controller is used for control of a laboratory chemical continuous 
stirred tank reactor. Armfield PCT40. The reactor is used for preparing of NaCl 
solution with desired concentration. The conductivity of the solution is the controlled 
variable and the volumetric flow rate of water is the control variable. 

Keywords: interval uncertainty, PI controller, robust control, chemical reactor 

 
Introduction  
 

Chemical reactors are ones of the most important plants in 
chemical industry, see e.g. [7]. Their operation, however, is 
corrupted with various uncertainties. Some of them arise 
from varying or not exactly known parameters, as e.g. 
reaction rate constants, reaction enthalpies or heat transfer 
coefficients. In other cases, operating points of reactors vary 
or reactor dynamics is affected by various changes of 
parameters of inlet streams. All these uncertainties can 
cause poor performance or even instability of closed-loop 
control systems. Application of robust control approach can 
be one of ways for overcoming all these problems, which 
may seriously influence control design for chemical reactors 
and other chemical processes, see e.g. [1], [6]. 

In this paper, a simple method for design of robust PI 
controllers is [8]. The method is based on plotting the 
stability boundary locus in the (kp,ki)-plane and then 
parameters of a stabilizing PI controller are determined from 
the stability region. The PI controller stabilizes a controlled 
system with interval parametric uncertainties, when the 
stability region is found for sufficient number of Kharitonov 
plants. 

The approach is used for design of a robust PI controller for 
a laboratory continuous stirred tank reactor, which can be 
modeled in the form of a transfer function with parametric 
interval uncertainty. The reactor serves for preparing of the 
NaCl solution with required concentration. Composition of 
the solution is determined by measurement of the solution 
conductivity and the conductivity is the controlled variable. 
The volumetric flow rate of water which is used for 
adulterating of NaCl solution, is the control variable. 

1. Description of the Laboratory Continuous 
stirred tank reactor 
 

Multifunctional process control teaching system - The 
Armfield PCT40 ([2], [9]) is the system which enables to test 

a wide class of technological processes, as a tank, a heat 
exchanger, a continuous stirred tank reactor and their 
combinations ([3], [4]). 

PCT40 unit consists of two process vessels, several pumps, 
sensors and connection to the computer. Additional 
equipments PCT41 and PCT42 (Figure 1) represent a 
chemical reactor with a stirrer and a cooling/heating coil. 

 
Fig.1 Laboratory continuous stirred tank reactor 

Inlet streams of reactants can be injected into the reactor via 
a normally closed solenoid valve or by a proportional 
solenoid valve (PSV). The third possibility for feeding water 
into the reactor is using one of two peristaltic pumps. The 
technological parameters of the reactor are shown in Table 
1. 

 
Parameter Value 
Vessel diameter 0.153 m 
Maximum vessel depth 0.108 m 
Maximum operation volume 2 l 
Minimum vessel depth 0.054 m 
Minimum operation volume 1 l 

Tab.1 Technological parameters of the reactor 
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The connection to the computer is realized via an I/O 
connector, which is connected to the PCL card. The card 
used is the MF624 multifunction I/O card from Humusoft. 
This card has 8 inputs and 8 outputs. The whole system 
provides 9 inputs and 17 outputs, hence two MF624 cards 
were used. This connection enables use of Matlab Real-
time Toolbox and Simulink or data entry from the Matlab 
command window. 

NaCl solution with the concentration 0.8555 mol/dm3 is fed 
into the reactor by a peristatic pump. The performance of 
the pump may be theoretically set in the range 0-100%. But 
for the pump performance less than 20%, revolutions of the 
rotor are very small and the produced force is not high 
enough to transport the fluid from the barrel. The volumetric 
flow rate of the NaCl solution for all measurements was 
0.2222 dm3/min, which represents the pump performance 
30%. 

The water was dosed into the reactor by the PSV. 
Application of the PSV allowed flow measurements by the 
adjoint flow meter. The PSV opening could be again done in 
the range 0-100%, but the volumetric flow rate of water for 
the PSV opening in the range 0-15% was negligible. 

For control purposes, the laboratory continuous stirred tank 
reactor is a SISO system. The control variable is the 
volumetric flow rate of water (F) and the controlled variable 
is the conductivity of the NaCl solution (G) inside the 
reactor. Used water was cold water from the standard water 
distribution. The volume of the solution in the reactor was 
kept constant with the value 1 dm3 during all experiments. 

2. Process identification 
 

Identification of the controlled laboratory reactor was done 
from measured step responses. The constant flow rate 
0.2222 dm3/min of NaCl solution dosed into the reactor was 
assured by the peristaltic pump with performance 30% in all 
experiments. Three various step changes of water flow rate 
were realized: 0-0.1804 dm3/min, 0-1.3 dm3/min and 0-1.78 
dm3/min which represented the PSV opening 0-20%, 0-50% 
and 0-100%. The step responses were measured 
repeatedly. The resultant transfer function of the laboratory 
reactor was identified ([5]) in the form of a transfer function 
(1) with the parametric interval uncertainty. The values of 
the uncertain parameters are shown in Table 2. Nominal 
values of the uncertain parameters are the mean values of 
intervals. 

( )
01

2
2

0

asasa
b

sG
++

=  (1) 

 
Parameter Minimal 

value 
Maximal 
value 

Nominal 
value 

b0 0.00405 0.178 0.091 
a2 130 500 315 
a1 36.5 148 92.25 
a0 1 1 1 

Tab. 2 Uncertain parameters 

The measured step response of the laboratory reactor and 
the simulated step response of the reactor with the identified 
transfer function (1) are compared in Figure 2 for the 
maximal step change of input variable. 

 
Fig.1 Comparision of the measured and the simulated 

step responses of the reactor 

3. Design of a robust PI controller 
 

A simple method based on plotting the stability boundary 
locus in the (kp,ki)-plane is used for robust PI controller 
design, [8], [10]. Parameters of a stabilizing PI controller are 
determined from the stability region of the (kp,ki) – plane. 
The PI controller stabilizes a controlled system with interval 
parametric uncertainties, when the stability region is found 
for sufficient number of Kharitonov plants. 

For the controlled system in the form of the transfer function 
(1) with interval uncertainty (Table 2), the Kharitonov 
polynomials Ni(s), i=1, 2 for the numerator and Dj(s), j=1, 2, 
3, 4 for the denominator can be created, as it is seen in (2), 
(3). 
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where b0
- and b0

+ are lower and upper bounds of the b0 
interval and ak

- and ak
+, k= 1, 2, are lower and upper bounds 

of intervals of denominator parameters. 8 Kharitonov 
systems (4) can be obtained using polynomials (2), (3) 

( ) ( )
( )sD
sN

sG
j

i
ij =  (4) 

Substituting s=jω into (4) and decomposing the numerator 
and the denominator polynomials of (4) into their even and 
odd parts one obtains 

( ) ( ) ( )
( ) ( )22

22

ωωω
ωωω

ω
−+−

−+−
=

joj

ioie
ij DjeD

NjN
jG  (5) 

The closed loop characteristic polynomial is as follows 
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( ) ( ) ( ) ( )[ ]
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Then, equating the real and imaginary parts of ∆(jω) to zero, 
one obtains 

( )( ) ( )( ) ( )22222 ωωωωω −=−+−− joieiiop DNkNk
 (7) 

and 

( )( ) ( )( ) ( )222 ωωω −−=−+− jeioiiep DNkNk  (8) 
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(7), (8) and (9) can be written as 

( ) ( ) ( )
( ) ( ) ( )ωωω
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 (10) 

From these equations, parameters of the PI controller are 
expressed in the form 
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Consider one of the systems (4), where i=2 and j=2 
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The closed loop characteristic polynomial has according to 
(6) the form 
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and then 
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The stability boundary of the closed loop characteristic 
polynomial in the (kp,ki)-plane for ω=[0:0.001:0.5] is plot in 
the Figure 3. It is seen in the figure that the region is split in 
two parts, stable and unstable ones. Parameters kp and ki of 
the stabilizing controller are chosen from the stable region. 

 
Fig.3 Stability region of parameters kp, ki for the system 

G22(s) 

Stable regions for all 8 Kharitonov systems are obtained 
alike. In the Figure 4 are shown stable regions for 8 
Kharitonov systems (4). The controller which stabilizes all 8 
Kharitonov systems has to be found in the intersection of all 
stable regions, which is in detail displayed in the Figure 5. 

 
Fig.4 Stability regions for 8 Kharitonov plants 
 

 
Fig.5 Detail of the stability region for 8 Kharitonov 

plants 

The parameters of the robust PI controller for control of the 
laboratory reactor (16) were chosen from the stable region 
of parameters kp, ki according to simulation results obtained 
for various choices of PI controllers. 
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The designed PI controller was used for control of the 
laboratory reactor. The controlled variable y(t) was the 
conductivity G [mS] of the NaCl solution, control variable u(t) 
was the water flow rate F [dm3/min] and the reference w(t) 
was the conductivity of the NaCl solution which 
corresponded to the required concentration of the NaCl 
solution. 

Obtained experimental results are presented in the Figures 
6 and 7. Robustness of the designed PI controller (16) was 
tested by setting the reference value in a wider area. In the 
Figure 6 are control responses of the reactor for ω∈[8; 16] 
mS and in the Figure 7 for ω∈[11; 21] mS. 

 

 
Fig.6 Control of the reactor with robust PI controller 
 

 

 
Fig.7 Control of the reactor with robust PI controller 

Conclusion 
 

The robust PI controller was designed for control of the 
laboratory continuous stirred tank reactor. A simple robust 
synthesis was used which was based on plotting the stability 
boundary locus in the (kp,ki)-plane. The stabilizing PI 
controller was chosen from the stable region of the (kp,ki)-
plane. The designed controller was tested experimentally by 
control of a laboratory reactor. Obtained experimental 
results confirm that the designed robust PI controller 
successfully controlled the laboratory reactor. The varying 
reference was always reached. The control responses were 
without overshoots and fast enough. The future work will be 
focused on improvement the choice of a stabilizing 
controller so that also the quality of control will be assured. 
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Global Asymptotically 
Stable Control Design 
for Time-delay Systems 

Anna Filasová, Dušan Krokavec 

Abstract  
The purpose of this paper is to present an improved version of   time-delay system 
state feedback control methods and any  extension over the one concerning the 
output and input variables   constraint. Based on the standard Lyapunov-Krasovskii 
functional   and norm-bounded constraints, delayed--independent stability condition   
is derived using linear matrix inequalities. The results obtained with a numerical 
example are presented to compare limitation in system structure for defined onstra-
ints. Since presented method is based on convex optimization techniques it is com-
putationally very efficient. 

Keywords: Constraints, linear matrix inequality, state feedback, time-delay systems, 
asymptotic stability 

 

 
Introduction 

The continuous-time control systems are used in many 
industrial applications, where time delays can take a delete-
rious effect on both the stability and the dynamic performan-
ce in open and closed-loop systems. The presence of dela-
ys (especially, long delays) makes system annalysis and 
control design much more complex, the system is very likely 
to overshoot or even became unstable. Therefore the stabili-
ty and control of dynamical systems involving time-delayed 
states is a problem of very large theoretical and practical 
interest where the intensive activities are done to eliminate 
fixed time delays, to compensate for the uncertain ones or 
to develop the control for time-delay systems stabilization, 
especially for the uncertain time-delay systems. 

Number of techniques for the time-delay linear systems 
control design as well as for the stability analysis have been 
reported in the literature over past decades. Usually for the 
stability issue of the time delay systems the Lyapunov-
Krasovskii functional is used and the results based on this 
functional are applied to the controller synthesis and to the 
observer design. This time-delay independent methodology, 
as well as used bounded inequality techniques are sources 
of conservatism that can cause higher norm of the state 
feedback gain (see e.g. [20]). Some progres review in this 
research field one can find in [5], [12], [21], and the referen-
ces therein. 

This paper is concerned with the problem of the asymptoti-
cally stable control design of the continuous-time linear 
systems with delayed state, where the case of single, po-
ssibly varying time delay is considered and attention is focu-
sed on the methods based on the linear matrix inequalities 
(LMIs).  As by-products, new formulae for the input/output 
constrained state feedback control of the system with the 
uncontroled time-delayed stay vectors is derived. The pre-
sented LMI approach is computationally efficient as it can be 
solved numerically using the interior point methods (see e.g. 
[11], [17], [18]) in LMI formulation, and is based on the norm 

bounded approximation for the Lyapunov-Krasovskii fun-
ctional (see e.g. [3], [7], [21]), as well for the new defined 
constrained extension of this functional. Numerical exam-
ples are presented to compare limitation in system structure 
for defined onstraints 

1. Problem Description 

Through this paper the task is concerned with the computa-
tion of the state feedback ( )tu  which control a time-delay 
linear dynamic system given by the set of equations 

2( ) ( ) ( ) ( )t t t tτ= + − +q Αq Α q Bu&   (1) 

( ) ( )t t=y Cq   (2) 

with initial condition 

( ) ( ), ,0ϑ ϕ ϑ ϑ τ= ∨ ∈〈− 〉q   (3) 

where 0τ > is the delay, ( ) nt ∈q R , ( ) rt ∈u R and ( ) mt ∈y R  
are vectors of the state, input and measurable output vari-
ables, respectively, and the nominal system matrices 

,n n×∈A R 2 ,n n×∈A R n r×∈B R and m n×∈C R are real matrices. 
Problem of the interest is to design the asymptotically stable 
closed-loop system with the memory less linear state feed-
back controller of the form 

( ) ( )t t= −u Kq   (4) 

Here matrix r n×∈K R is the controller gain matrix. It is sup-
posed that all eigenvalues of the matrix 

2 2( )c = − +A Α BK Α   (5) 

lie in the open left-half plane. The above assumption, which 
corresponds to the asymptotic stability of the closed-loop 
system without time delay, is indeed necessary for the as-
ymptotic stability of closed-loop system with time delays. 
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2. Basic Preliminaries 

2.1 Schur Complement 

The nonlinear convex inequalities can be converted to LMI 
form using Schur complements. Let a linear matrix inequal-
ity takes form 

0, 0, 0T T
T

⎡ ⎤ < = > = >−⎢ ⎥⎣ ⎦
Q S Q Q R RS R   (6) 

Using Gauss elimination it yields 

T
T T

− −

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+=− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1
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Since 

det 1
−⎡ ⎤ =⎢ ⎥⎣ ⎦

1I SR
0 I   (8) 

and I is the identity matrix of appropriate dimension, with 
this transform the negativity of (7) is not changed, i.e. this 
follows as a consequence 

0 0

0, 0

T

T

T

−

−

⎡ ⎤ ⎡ ⎤+< ⇔ <⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

+ < >

1

1

Q S Q SR S 0
S R 0 R

Q SR S R
c                            (9)  

respectively. As one can see, this complement offer possi-
bility to rewrite the nonlinear inequalities in a closed matrix 
LMI form (see e.g. [1], [8]). 

2.2 Symmetric upper-bounds inequality 

Let ,n∈p R  ,n∈r R  are vectors of equal dimension. Then 
the next equality is satisfied 

1T T T T−− − ≤ +p r r p p S p r Sr   (10) 

where 0,T= >S S ,n n×∈S R is any symmetric positive defi-
nite matrix. (see e.g. [9], [10]). 

3. Time-delay System Control  
with Output Constraint 

Defining the Lyapunov--Krasovskii functional with output 
constraint as follows 

v( ( )) ( ) ( ) ( ( ) ( ) ( ) ( ))d
t

T T T

t
t t t r r t t r

τ
ε

−

= + +∫q q Pq q Rq y y   (11) 

where 0,T= >P P 0,T= >R R 0 1,ε≤ <  and evaluating deri-
vative of v( ( ))tq  gives 

v( ( )) ( ) ( ) ( ) ( )
( ( ) ( ) ( ) ( )) 0

T T

tT T

t

t t t t t
r r t t

τ
ε

−

= + +
+ + <
q q Pq q Pq
q Rq y y

& &&
  (12) 

2

2

v( ( )) ( ( ) ( ) ( )) ( )
( ) ( ( ) ( ) ( ))

( )( ) ( ) ( )( ) ( ) 0

T

T

T T T T

t t t t t
t t t t

t t t t

τ
τ

ε τ ε τ

= + − + +
+ + − + +

+ + − − + − <

q Αq Α q Bu Pq
q P Αq Α q Bu

q R C C q q R C C q

&

  (13) 

respectively. Using inequality (10) it can be written 

2 2

2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T T T

T T T
t t t t

t t t t
τ τ
τ τ −
− + − ≤

≤ − − + 1
q Α Pq q PΑ q
q Sq q PΑ S Α Pq

  (14) 

and considering (14) it is possible to rewrite (13) in the form 

2 2

v( ( )) ( ) ( ) ( ) ( )
( )( ) ( )

( )( ) ( ) 0

T T

T T T T

T T

t t t t t
t t

t t
ε

τ ε τ

−
≤ + +

+ + + + + +
+ − − − − <

T

1
q u B Pq q PBu

q A P PΑ PΑ S Α P R C C q
q S R C C q

&

  (15) 

Then, with (4), inequality (15) implies 

2 2( )( ) ( )
( )( ) ( ) 0

T T T

T T
t t

t t
ε

τ ε τ

−+ + + + − − +
+ − − − − <

1 T Tq A P PΑ PΑ S Α P R C C K B P PBK q
q S R C C q

 

 (16) 

or, in the matrix form 

1

2

0 ( )( ) ( ) 0( )0
T T tt t tτ τ

Φ⎡ ⎤ ⎡ ⎤⎡ ⎤− <⎣ ⎦ ⎢ ⎥ ⎢ ⎥−Φ ⎣ ⎦⎣ ⎦
qq q q   (17) 

where 

1 2 2 0T Tε−Φ = + + + + − − <1 T TA P PΑ PΑ S Α P R C C K B P PBK   (18) 

2 ( ) 0TεΦ = − + <S R C C   (19) 

Since 0,T= >P P  pre-multiplying (18) from the left side and 
the right side by 1 0− >P  leads to the next inequality 

1 1 1 1
1 1 2 2

1 1 1 1( ) 0

T

Tε

− − − − −

− − − −

Ψ = Φ = + + +
+ + − − <

1

T T

P P P A ΑP Α S Α
P R C C P P K B BKP

  (20) 

If both design parameters are prescribed and fixed and 
0,T= >R R  0 1,ε< < then the design condition takes form 

of LMIs 

2 2 0
T T T T−⎡ ⎤+ + − − <⎢ ⎥∗ −⎣ ⎦

1YA AY A S A BZ Z B Y
X

  (21) 

0⎡ ⎤ <⎢ ⎥∗⎣ ⎦
S I
X   (22) 

with the LMI variables 
1 10,− −= > = =Y P Z KP KY   (23) 

and with the design parameter 
1( )Tε −= +X R C C   (24) 

If design parameters are free, it is possible to be chosen 
1 (1 ) , 0 1Tε η δ δ− −= + = + = < <1X R C C I I   (25) 

Then the structures of (21) and (22) are 

 2 2 0
T T T T

δ

−⎡ ⎤+ + − − <⎢ ⎥∗ −⎣ ⎦

1YA AY A S A BZ Z B Y
I

  (26) 

0δ
⎡ ⎤ <⎢ ⎥∗⎣ ⎦
S I

I   (27) 

Especially, if it is possible to be chosen η = 0, i.e. δ = 1, and 
,=S I  in limit can be obtained 2Φ = 0, and 

2 2 0
T T T T−⎡ ⎤+ + − − <⎢ ⎥∗ −⎣ ⎦

1YA AY A S A BZ Z B Y
I

  (28) 

Condition (28) with δ = 1 and =S I  set this design task to be 
independent on the system state time delay. 

Solving for Y and Z, the gain matrix of the state feedback control 
law for the all above mentioned modifications can be designed as 

−= = 1K ZP ZY   (29) 

To compute Y and Z any LMI solver is necessary to use. 
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4. Time-delay System Control  
with Output and Input Constraint 

Generally it is possible to extend constraint in the Lyapunov-
-Krasovskii functional (11) as follows 

v ( ( )) v( ( )) ( ) ( )d
t

T
e

t
t t t t r

τ
γ

−

= + ∫q q u u   (30) 

where v( ( ))tq  is defined in (11)  with 1,ε = and 0γ > . 

Then time derivative of Lyapunov--Krasovskii functional (30) 
takes form 

v ( ( )) v( ( )) ( ) ( ) ( ) ( ) 0T T
e t t t t t tγ γ τ τ= + − − − <q q u u u u& &   (31) 

where v( ( ))tq&  is given in (15). Then, with (4) and (15) ine-
quality (31) implies 

1

2

0 ( )( ) ( ) 0( )0
T T e

e

tt t tτ τ
Φ⎡ ⎤ ⎡ ⎤⎡ ⎤− <⎣ ⎦ ⎢ ⎥ ⎢ ⎥−Φ ⎣ ⎦⎣ ⎦

qq q q   (32) 

1 2 2

0

T T
e

γ

−Φ = + + + + −
− − + <

1

T T T
A P PΑ PΑ S Α P R C C
K B P PBK K K

  (33) 

2 ( ) 0T
e γΦ = − + − <TS R C C K K   (34) 

Therefore, using symmetric properties of P one can write for 
1 ,eΨ 2eΨ  

1 1 1 1 1
1 1 2 2

1 1 1 1( ) 0

T
e e

T γ

− − − − − −

− − − − −

Ψ = Φ = + + − +
+ + + − <

1 T T

T 1

P P P A ΑP Α S Α P K B
P R C C P P K KP BKP

  (35) 

1 1 1 1
2 2 ( ( ) ) 0T

e e γ− − − −Ψ = Φ = − + − <TP P P S R C C K K P   (36) 

and using (23), (24), to do it as follows 

2 2

0

T T T T γ

γ

−⎡ ⎤+ + − −
⎢ ⎥∗ − <
⎢ ⎥∗ ∗⎢ ⎥⎣ ⎦

1 T

m

YA AY A S A BZ Z B Y Z
X 0

I
  (37) 

1

0

γ

γ

−
⎡ ⎤
⎢ ⎥∗ − <⎢ ⎥∗ ∗⎢ ⎥
∗ ∗ ∗⎢ ⎥⎣ ⎦

0 Y Y Z
S 0 0

X 0
I

  (38) 

1 1 10, , ( )T− − −= > = = = +Y P Z KP KY X R C C   (39) 

If design parameters are free, it is possible to choose X as 
in (25), i.e. 

1 (1 ) , 0 1T η δ δ− −= + = + = < <1X R C C I I   (40) 

Then the structures of matrix inequalities (37) and (38) take 
forms 

2 2

0

T T T T γ
δ

γ

−⎡ ⎤+ + − −
⎢ ⎥∗ − <
⎢ ⎥∗ ∗⎢ ⎥⎣ ⎦

1 T

m

YA AY A S A BZ Z B Y Z
I 0

I
  (41) 

1

0

γ

δ
γ

−
⎡ ⎤
⎢ ⎥∗ − <⎢ ⎥∗ ∗⎢ ⎥
∗ ∗ ∗⎢ ⎥⎣ ⎦

0 Y Y Z
S 0 0

I 0
I

  (42) 

Solving for Y and Z, the gain matrix of the state feedback 
control law for these modifications can be designed using 
(29), too. 

5. Illustrative example 

The numerical example is provided below to illustrate the 
main results. It is assumed that the parameters of the delay 
system (1), (2) are given by 

2

7.36 2.76 13.80 2.88 0.96 0.96
19.58 8.96 31.80 , 9.48 3.16 3.16

5.68 3.88 5.40 4.44 1.48 1.48

− − − − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦

A A  

0.4 0.6 2 1 30.4 2.6 , 1 1 00.2 0.2

−⎡ ⎤
⎡ ⎤⎢ ⎥= − = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

B C  

and the design parameters of Lyapunov--Krasovskii functio-
nal with output constraint (11) satisfy equalities 

, 0 1,Tε δ δ−+ = < < =1R C C I S I   

Solving (26), (27) for LMI matrix variables (23) using the 
Self-Dual-Minimization (SeDuMi) package for Matlab [13]), 
the feedback gain matrix design problem was solved as 
feasible with these matrices 

3.1236 1.8626 2.9324
1.8626 5.9776 2.1982
2.9324 2.1928 6.3620

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

Y  

14.0738 11.5758 92.5781
43.9268 72.1630 72.1595

−⎡ ⎤= ⎢ ⎥⎣ ⎦
Z  

Substituting for Y and Z into (29) there was computed the 
feedback gain matrix as follows 

437.3844 249.4492 302.4663
198.5989 118.5257 121.2061

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
K  

 

It is possible easily to verify, that the closed loop is stable, 
with the system matrices satisfying given stability condition 
for 

63.1544 31.4243 34.4629
321.8434 199.4270 225.9493
132.8767 77.4750 79.3345

c

− −⎡ ⎤
⎢ ⎥= − = − −
⎢ ⎥− −⎣ ⎦

A A BK  

( ) { 8.5632 13.9219 160.7619}cρ = − − −A   

2( ) { 8.5572 23.7091 152.1807}cρ + = − − −A A  

where ( )ρ ⋅  denotes the eigenvalue spectrum of any square 
matrix. 

Using Lyapunov--Krasovskii functional (30), with the output 
and the input variable constraint parameters setting as  

1,ε = and 0.1γ =  there were no feasible solutions for LMI 
matrix variables Y and Z if matrix 2A was specified as given 
above. Taking in computation another time-delay states 
system matrix 2A  chosen as follows 

2 20.2• =A A   

the problem was feasible with these results 

0.5303 0.8413 0.0603
0.8413 1.6117 0.0815
0.0603 0.0815 0.2798

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

Y  

0.4340 0.1380 1.0476
1.1634 2.6166 2.5129

−⎡ ⎤= ⎢ ⎥⎣ ⎦
Z  
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17.0074 9.4774 10.1687
31.0407 17.9748 2.9407

−⎡ ⎤= ⎢ ⎥−⎣ ⎦
K  

4.4615 4.2339 11.4669
54.3430 33.9835 35.3782
15.2896 9.3704 2.7781

c

−⎡ ⎤
⎢ ⎥= − −
⎢ ⎥− − −⎣ ⎦

A  

respectively. Since both eigenvalue spectrum of the system 
matrices 

( ) { 5.1736 10.7180 16.4086}cρ = − − −A   

2( ) { 4.0292 14.2555 j 3.7255}cρ + = − − ±A A  

lie in the open left-half plain, designed control is stable. 

5. Concluding Remarks 

In this paper there was developed a constructive method 
based on the classical memory-less feedback control for the 
stabilization of the time-delay systems with constraints given 
on the output and the input variables. The method ensures 
that the closed-loop system is internally stable in the sense 
of the global uniform asymptotic stability in the presence of 
a state time delay. The validity of the proposed method is 
demonstrated by the numerical examples with the asymp-
totically stable closed-loop system variables. 
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An Effective Robust Controller  
Algorithm Design 

Ján Cigánek, Štefan Kozák 

Abstract 
The paper deals with simple and robust discrete controller design using new appro-
ach using the reflection vectors techniques. We assume that the controller structure 
consists of feed-forward and feedback parts. Developed robust algorithms were 
tested on the case study examples for different dynamical processes stable, unstab-
le and oscillating type. Simulations were realized in MATLAB-Simulink. Obtained 
numerical and simulation results confirm applicability of the theoretical principles for 
robust control of processes subject to parametric model uncertainty.  

Keywords: robust control, robust stability, parametrical uncertainty, pole-placement, 
quadratic programming 

 
Introduction 

During last ten years, development of robust control ele-
mentary principles and evolution of new robust control met-
hods for different model uncertainty types are visible. Prog-
ress in new techniques and theories in control of processes 
with model uncertainty is necessary because of performan-
ce requirements on control of complex processes containing 
large number of loops, activities coordination of a many 
agents in hybrid and stochastic control of systems contai-
ning large plant model uncertainties. Based on theoretical 
assumptions, modeling and simulation methods, an effective 
approach to the control of processes with strong and unde-
fined uncertainties is designed. Such uncertainties are typi-
cal for biotechnology processes, chemical plants, automobi-
le industry, aviation etc. For such processes is necessary to 
design robust and practical algorithms which ensures the 
high performance and robust stability using proposed mat-
hematical techniques with respect the parametric and un-
modelled uncertainties.  Solution to such problems is po-
ssible using robust predictive methods and „soft-techniques“ 
which include fuzzy sets, neuron networks and genetic algo-
rithms. 

Robust control is used to guarantee stability of plants with 
parameter changes. The robust controller design consists of 
two steps:  
• analysis of parameter changes and their influence for 

closed-loop stability, 
• robust control synthesis. 

In hybrid control structures that combine the discrete con-
troller and continuous plant, it is difficult to assess the clo-
sed-loop stability. One possibility is transformation of the 
controller and the continuous plant to the discrete-time re-
gion and specifying requirements for the discrete controller 
design. The problem of the robust controller design can be 
solved as:  
• Time-optimal robust controller design 
• Design of the robust controller based on the pole-

placement 

In both parts of the robust controller design it is po-
ssible to evolve from the solution of Diophantine equa-
tions. 

1. Problem Formulation 

Consider the robust control synthesis of a scalar discrete-
time control loop. Transfer function of the original continuo-
us-time system is described by the transfer function 
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Transfer function of (1) can be converted to its discrete-time 
counterpart 
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For the plant (2) a discrete-time controller is to be designed 
in form 
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 (3)  

The corresponding closed-loop characteristic equation is 

0)z(G)z(G1 1
R

1
P =+ −−  (4) 

Substituting (3) and (2) in (4) after a simple manipulation 
yield the characteristic equation 
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 (5) 

Unknown coefficients of the discrete controller can be de-
signed using various methods. In this paper robust controller 
design method based on reflection vectors is used. 
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The pole assignment problem is as follows: find a controller 
( )zGR  such that C(z)=e(z) where e(z) is a given (target) 

polynomial of degree k. It is known [8] that when 1−= nµ , 
the above problem has a solution for arbitrary e(z) whenever 
the plant has no common pole-zero pairs. In general for 

1−< nµ  exact attainment of a desired target polynomial 
e(z) is impossible. 

Let us relax the requirement of attaining the target polyno-
mial e(z) exactly and enlarge the target region to a polytope 
V  in the polynomial space containing the point e represen-
ting the desired closed-loop characteristic polynomial. Wit-
hout any restriction we can assume that 10 == pan  and 
deal with monic polynomials C(z), i.e. 10 =α .  

Let us introduce the stability measure as ρ = cT c, where 

CSc 1−=  (6) 

and S is a matrix of dimensions (n + µ + 1) x (n + µ + 1) 
representing vertices of the target polytope V. For monic 
polynomials holds 

1c
1k

1i
i =∑

+

=
 (7) 

where k = n + µ. If all coefficients are positive,        i.e. ci > 0, 
i = 1,..., k + 1, then the point C is placed inside the polytope 
V.  

The minimum ρ is attained if 

1k
1ccc 1k21 +

==== +K  (8) 

Then the point C is placed in centre of the polytope V.  

In matrix form we have 

GxC =  (9) 

where G is the Sylvester matrix of the plant 
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 with dimensions ( ) ( )21 ++×+++ υµµ dn  and  x is the 
( )2++υµ -vector of controller parameters: 

[ ]T01 q,,q,1,p,,px KK υµ= . 

Now we can formulate the following control design problem: 
find a discrete controller ( )zGR  such that the closed-loop 
characteristic polynomial C(z) is placed: 
• In a stable target polytope V, V)z(C ∈  (to guarantee 

stability) 
• As close as possible to a target polynomial e(z), 

V)z(e ∈ (to guarantee performance). 

Let the polytope V denote the ( ) N1k ×+  matrix composed of 
coefficient vectors jv , Nj ,,1 K=  corresponding to verti-

ces of the polytope V. 

Then we can formulate the above controller design problem 
as an optimization task: Find x that minimizes the cost fun-
ction 

2
x

TTT
x

1 eGxminGxe2GxGxminJ −=−=  (10) 

subject to the linear constraints 

),x(wVxG =  (11) 

,N,,1j,0)x(w j K=>  (12) 

.1)x(w
j

j =∑  (13) 

Here w(x) is the vector of weights of the polytope V  vertices 
to obtain the point C = G x. Fulfillment of the latter two con-
straints (12), (13) guarantees that the point C is indeed 
located inside the polytope V. Then, finding the robust pole-
placement controller coefficients represents an optimization 
problem that can be solved using the Matlab Toolbox OP-
TIM (quadprog) with constraints [9]. 

 Generally J1 is a kind of distance to the centre of the target 
polytope V. Is it better to use another criterion J2, which 
measures the distance to the Schur polynomial E(z)  

).EGx()EGx()EC()EC(J TT
2 −−=−−=  (14) 

It is possible to use the weighted combination of J1 and J2 

10,JJ)1(J 21 ≤≤+−= ααα  (15) 

and to solve the following quadratic programming task 

[ ]{ }
.0GxS

,GxE2GxI)SS)(1(GxminJ

1

T
1k

1TTT
x

<

−+−=

−

+
− ααα  (16) 

Assume the discrete robust controller design task with pa-
rametrical uncertainties in system description. Let us also 
assume that coefficients of the discrete-time system transfer 
functions an , ..., a1 and bn , ..., b1 are placed in polytope W 
with the vertices [ ]jj

n
jj

n
j bbaad 11 ,,,, KK= :)  

}M,...,1j,d{convW j ==  (17) 

As (9) is linear in system parameters, it is possible to claim 
that for arbitrary vector of the controller coefficients x is the 
vector of the characteristic polynomial coefficients C(z) 

placed in the polytope A with vertices M1 a,,a K : 

}M...,,1j,a{convA j ==  (18) 

where xDa jj = and jD is the Sylvester matrix of dimen-
sions (n + µ + d + 1) x (µ + υ + 2), composed of vertices set  
d j, as in case of the exact model (9). 
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1.1 Problem Formulation 

The digital controller [ ]T01 q,,q,1,p,,px KK υµ=  is to be 

designed such that all its vertices a j, j = 1, ..., M are placed 
inside a stable desired target polytope V.  

This problem can be effectively solved using quadratic prog-
ramming procedure. It is necessary to find the controller x 
by minimization of the cost function 

x

jT

Mk

M
T

M
T

T

MjxDSxDE

xD
I

SISI
DxJ

,,1,0,2

))()()(1(
min

1
_

_

)1(

11_

K=>
⎭
⎬
⎫−

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+⊗⊗−

=

−

+

−−

α

α
α

 (19) 

where IM is identity matrix of dimension M, ⊗ is the Kro-

necker product and [ ]T
M

T
T

DDD ,,1

_

K= . 

1.2 Stable Region Computation  
via Reflection Coefficients 

Polynomials are usually specified by their coefficients or 
roots. They can be characterized also by their reflection 
coefficients using Schur-Cohn recursion. 

Let Ck(z-1) be a monic polynomial of degree k with real coef-
ficients ci∈R, i = 0, ..., k,  

C(z-1) = 1 + c1 z-1 + ... + ck z-k. (20) 

Reciprocal polynomial of the polynomial Ck(z-1) is defined in 
[11] as follows 

k1k
1

1
1kk

1
k zzczcc)z(C −+−−

−
−∗ ++++= K  (21) 

Reflection coefficients ri, i = 1, ..., k, can be obtained from 
the polynomial Ck(z-1) using backward Levinson recursion 
[12] 

[ ])z(Cr)z(C
r1

1)z(Cz 1
ii

1
i2

i

1
1i

1 −∗−−
−

− −
−

=  (22) 

where ii cr −=  and ic  is the last coefficient of )( 1−zCi of 
degree i. From (22) we obtain in a straightforward way:  

).()()( 1
1

1
1

11 −∗
−

−
−

−− += zCrzCzzC iiii  (23) 

Expressions for polynomial coefficients )( 1
1

−
− zCi  and 

)( 1−zCi  result from equations (22) and (23):  

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

−
= −

−

=
−−+

−
− ∑ )zcrc

r1

1)z(C j
1i

0j
1ji,ii1j,i2

i

1
1i

 (24) 

( ) .zcrc)z(C j
i

0j
1ji,1ii1j,1i

1
i

−

=
−−−−−

− ∑ +=  (25) 

The reflection coefficients ri are also known as Schur-Szegö 
parameters [11], partial correlation coefficients [6] or k-
parameters [13]. Presented forms and structures were effec-
tively used in many applications of signal processing [13] 
and system identification [6]. A complete characterization 
and classification of polynomials using their reflection coeffi-
cients instead of roots (zeros) of polynomials is given in [11]. 

The main advantage of using reflection coefficients is that 
the transformation from reflection to polynomial coefficients 
is very simple. Indeed, according to (23) and (25), polyno-

mial coefficients ci depend multilinearly on the reflection 
coefficients ri. If the coefficients Rci ∈  are real, then also 
the reflection coefficients Rri ∈  are real. 

Transformation from reflection coefficients ri, i = 1, ..., k, to 
polynomial coefficients ci, i = 1, ..., k, is as follows 

)k(
ii cc = ,      i

)i(
i rc −= ,  

)1i(
jii

)1i(
j

)i(
j crcc −

−
− −= , (26) 

i = 1, ..., k;   j = 1, ..., i – 1  

or in the matrix form 

,c)r(RC )t(=    t = 1, ..., k – 1,  

,C
)r(R

0C )1t(

tt

T)t( −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  (27) 

where 

[ ] ,1,c,,cC T
1k K=  

,1,c,,c,0C
T)t(

1
)t(

t
)t(

⎥⎦
⎤

⎢⎣
⎡= K  

[ ] ,1,0C T)0( =  

,
)r(R

0
)r(R

0)r(R)r(R
tt

T

1k1k

T
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−
L  

,ErI)r(R 1jj1jjj ++ −=  

where kI  is a k x k identity matrix,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01
...
10

K

K

kE  and T0  

is a row vector of zeros. 

 

Lemma 1.  A linear discrete-time dynamic system is stable if 
its characteristic polynomial is Schur stable, i.e., if all its 
poles lie inside the unit circle.  

The stability criterion in terms of reflection coefficients is as 
follows [11]. 

 

Lemma 2. A polynomial C(z-1) has all its roots inside the unit 
disk if and only if ,1ri <   i = 1, ..., k. 

A polynomial C(z-1) lies on the stability boundary if some 
,1ri ±=  i = 1, ..., k. For monic Schur polynomials there is a 

one-to-one correspondence between [ ]T1k c,,cC K=  and 

[ ] .r,,rr T
k1 K=  

Stability region in the reflection coefficient space is simply 
the k-dimensional unit hypercube { }.k,,1i),1,1(rR i K=−∈= . 
The stability region in the polynomial coefficient space can 
be found starting from the hypercube R. 

1.3 Stable Polytope of Reflection Vectors 

It will be shown that for a family of polynomials the linear 
cover of the so-called reflection vectors is Schur stable. 
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Definition 1. The reflection vectors of a Schur stable monic 
polynomial C(z-1) are defined as the points on stability bo-
undary in polynomial coefficient space generated by chan-
ging a single reflection coefficient ir  of the polynomial C(z-

1). 

Let us denote the positive reflection vectors of  C(z-1) as 
( ) ,k,,1i,1rC)C(v ii K===+  and the negative reflection 

vectors of C(z-1) as ( ) .k,,1i,1rC)C(v ii K=−==−  

The following assertions hold: 

1. every Schur polynomial has 2k reflection vectors 
)C(vi

+ and ;k,,1i),C(vi K=−  

2. all reflection vectors lie on the stability boundary 
);1r( v

i ±=  

3. the line segments between reflection vectors )C(vi
+ and 

)C(vi
− are Schur stable. 

In the following theorem a family of stable polynomials is 
defined such that the polytope generated by reflection vec-
tors of these polynomials is stable. 

Theorem 1. Consider ( ),1,1rC
1 −∈  ( )1,1rC

k −∈  and 

0rr C
1k

C
2 === −K . Then the inner points of the polytope 

V(C) generated by the reflection vectors of the point C 

{ }k,,1i),C(vconv)C(V i K== ±  (28) 

are Schur stable.  

1.4 Roots of Reflection Vectors 

In this section we study the root placement of reflection 
vectors. It is useful for selecting a stable target simplex to 
solve the robust output control problem. 

By definition, at least one root of a reflection vector 

)C(vi (i.e. root of [ ] ⎥
⎦

⎤
⎢
⎣

⎡
= −−−

1
)C(v

1zz)z(V i1k1
i K ) must lie on 

the unit circle, and the number of unit circle roots is determi-
ned by the number i of the reflection vector )C(vi  and the 
character of the roots (real or complex) is determined from 
the sign of the boundary reflection coefficient ).1r( V

i ±=  

1.5 Robust Controller Design 

A robust controller is to be designed such that the closed-
loop characteristic polynomial is placed in the stable polyto-
pe (linear cover) of reflection vectors. It means that the 
following problems have to be solved: 

1. choice of initial polynomial C(z-1) for generating the poly-
tope V(C), 

2. choice of k + 1 most suitable vertices of V(C) to build a 
target simplex S, 

3. choice of a target polynomial E(z-1). 

In the following section some “thumb rules” are given for 
choosing a stable target simplex S. 

To choose k + 1 vertices of the target simplex S we use the 
well known fact that poles with positive real parts are prefer-
red to those with negative ones [1]. The positive reflection 

vectors )C(vi
+ with i odd and negative reflection vectors 

)C(vi
− with i even are chosen yielding k vertices. The 

(k+1)th vertex of the target simplex S is chosen as the mean 
of the remaining reflection vectors. 

The target polynomial E(z-1) of order k is reasonable to be 
chosen inside the stable polytope of reflection vectors V(C). 
A common choice is E(z-1)=C(z-1). 

For higher-order polynomials the size of the target simplex S 
is considerably less than the volume of the polytope of ref-
lection vectors V. That is why the above quadratic progra-
mming method with a preselected target simplex S works 
only if uncertainties are sufficiently small. Otherwise it is 
reasonable to use some search procedure to find a robust 
controller such that the polytope of closed-loop characteris-
tic polynomial is placed inside the stable polytope of reflec-
tion vectors V(C). 

2. Illustrative example – Controller Design 
via Reflection Coefficients 

Consider the approximate model of a PUMA 762 robotic 
disk grinding process [4]. From the results of identification 
and because of the nonlinearity of the robot, the coefficients 
of the numerator of the plant transfer function change for 
different positions of the robot arm:  

.
2508.00265.17790.19140.11

)03376.01688.0()03238.01619.0(
)01528.00764.0()0005.00257.0(

)( 4321

43

21

1
−−−−

−−

−−

−

+−+−
±−±−

−±−±

=
zzzz
zz

zz

zG p
 (29) 

The task is to design a discrete-time controller (3), υ=µ=3. 

From the transfer function (29) and matrix form of (9) results 
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q
q
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p

C

Let us choose the initial polynomial C(z-1) for generating the 
polytope V(C) as follows 

]3.01[]2.01][1.01[
]2.01][3.01[)(

1211

211

−−−

−−

++−

−−=

zzz
zzzC  (30) 

with reflection coefficients ,1.01 =r  ,17.02 =r   

,017.03 −=r  ,0088.04 −=r  ,00088.05 =r  

,000144.06 =r   .0000144.07 −=r  

Now we can find the reflection vectors )C(vi of the initial 
polynomial C(z-1) leading to the matrix form of the target 
simplex S (vertex polynomial coefficients) 

.

11111111
03.05.000000
7.0003.00000

01.00003.000
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0001.0005.00
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=ES

 

The discrete-time controller design task for the nominal 
transfer function (29) has been solved via quadratic progra-
mming taking α=0.1 in the cost function J (16). 
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For the selected target simplex S we have obtained the 
following discrete-time feedback controller 

( ) 321

321
1

843.0788.1959.11
169.0241.2857.1765.1

−−−

−−−
−

+++
+−+−

=
zzz

zzzzGFB
 (31) 

with control law 

( ) ( ) ( ) ( )
)3(17.0)2(24.2)1(86.1)(77.1

384.0279.1196.1 2222

−+−−−+−
−−−−−−−=

kykykyky
kukukuku . (32) 

Corresponding closed-loop step responses under the feed-
back controller (31) are in Fig.1. 

 
Fig.1 Closed-loop step responses under robust control-

ler  
 

Conclusion  

The paper deals with the development of robust methods 
based on reflection vectors methodology for computation of 
control law coefficients guaranteeing stability, robustness 
and high performance with respect to parameter uncertain-
ties. Theoretical results were verified on the examples for 
feedback and feedforward control structures. Proposed 
methods were tested for both stable and unstable proces-
ses. 

The paper proposes theoretical principles and design met-
hodology of robust discrete-time controllers for systems with 
parametric uncertainties. 

The illustrative example was solved using quadratic prog-
ramming for suitably defined cost function. Simulation re-
sults prove applicability of the proposed robust controller 
design theory for systems with parametric uncertainty. The 
proposed robust techniques present conservative solution 
without performance analysis. For better performance is 
necessary to prove different values of the matrix S and 
poles of initial polynomial C(z-1). 
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Robust control  
of a laboratory process  

Katarína Vaneková , Monika Bakošová, Radek Matušů, Jana Závacká  
 
Abstract  
The paper presents robust control of a laboratory process with a transport delay using the industrial control system SI-
MATIC. The controlled process is identified in the form of a transfer function of a higher order with a transport delay at first 
and then the transport delay is approximated by the first order Taylor series expansion of the numerator or the denominator. 
Because the transport delay can vary, the controlled laboratory process is modelled in the form of a transfer function with 
interval parametric uncertainty. Robust PI controllers are designed for the laboratory process. The method for synthesis of 
robust controllers is based on plotting the stability boundary locus in the (kp, ki) - plane and the subsequent choice of a stabi-
lizing PI controller using the pole-placement method so that the prescribed behavior of the closed-loop is achieved.  
 
Keywords:  PI controller, robust control, interval uncertainty, control system SIMATIC, transport delay  

 
1.  Introduction 

The field of robust control has experienced a large number 
of breakthroughs over last decades. The primary focal 
points have been robustness analysis [5] and robustness 
synthesis involving structured real parametric uncertainty, 
see e.g. [3]. Numerous interests have grown in various 
problems of analysis, synthesis, and design for interval 
plants. 

There has been done a great amount of research work on 
tuning of PID controllers since these types of controllers 
have been widely used in industrial applications [7, 11]. PID 
controller design in classical control engineering is based on 
a plant with fixed parameters and the latest approaches can 
be found e.g. [8]. In the real world, however, most process 
models are not known exactly and so, models contain un-
certainties. Hence control system design for both, stability 
and performance robustness always requires taking uncer-
tainties into account. 

In this paper, a method for design of robust PI controllers is 
used, see [10]. The method is based on plotting the stability 
boundary locus in the (kp, ki)-plane and the subsequent 
choice of a stabilizing PI controller using the pole-placement 
method so that the prescribed behavior of the closed-loop is 
achieved. 

2.  SIMATIC S7-300  

SIMATIC S7-300 is an industrial control system, which is 
used in many applications of process control. SIMATIC 
includes programming (STEP7) and visualization (WinCC) 
software, which are used for programming of programmable 
logic controllers (PLCs), for data accessing to users and 
they are simply applicable for monitoring and control of real 
processes. 

The structure of the user’s program is created by the or-
ganization block OB35, witch represents the main program 
that works cyclic with the sample time 100ms. The organiza-
tion block OB35 includes a function block of a PID controller 
(FB41). Before the blocks are programmed [6, 9], it is nec-
essary to create a project, configure a network, define input 
and output modules and define connections between input 
and output modules. Visualization of the project is realized 
in the Graphics Designer. Visualization software WinCC 
gives to users a possibility to define their own visualization 
for controlled processes. The component of WinCC is a 
graphic editor. WinCC allows choice of manipulating ele-

ments, I/O fields and monitoring windows according to de-
mands of users. WinCC processes all important data from 
the program STEP7 and the connection between WinCC 
and STEP7 is linked by tags. For visualization of the con-
trolled laboratory process a visualization screen has been 
created. All measured data and their graphic trends are 
displayed. User can design any objects for creating of a 
visualization screen individually or objects from a library can 
be chosen. 

3.  Laboratory process  

Controlled laboratory process (Fig. 1) is an electronic model 
of a linear 2nd order system with a transport delay varying 
from 6s to 30s [1]. The process was identified by Strejc 
method [4] in the form of a transfer function 

( )
( )

[ ]sDD
s e

sT
KsG maxmin ,

21
−

+
=   (1) 

where K is the gain, T is the time constant and Dmin, Dmax 
are the minimun and the maximum transport delays of the 
process. The process was identified from step responses 
measured in various working areas and the identified pa-
rameters are collected in Table 1. 

 
K T(s) D(s) n 

0.97 10.0 12.6 2 

0.97 10.1 17.1 2 

0.97 10.4 22.4 2 

0.97 10.7 35.4 2 

Tab.1 Identified parameters  

4.  Robust controller design  

4.1  Destription of an uncertain system  

Consider a system with real parametric uncertainty de-
scribed by the transfer function 

( ) ( )
( )qsa

qsbqsGs ,
,, =   (2) 
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where q is a vector of uncertain parameters and b, a are 
polynomials in s with coefficients which depend on a pa-
rameter q. 

 
Fig.1 Controlled laboratory process 

An uncertain polynomial 

( ) ( )∑
=

=
n

i

i
i sqaqsa

1
,   (3) 

is said to have an independent uncertainty structure if each 
component qi of q enters into only one coefficient ai. 

A family of polynomials 

( ){ }QqqsaA ∈= :,   (4) 

is said to be an interval polynomial family if a(s, q) has an 
independent uncertainty structure, each coefficient depends 
continuously on q and Q is a box. An interval polynomial 
family A arises from the uncertain polynomials described by 
a(s, q) with uncertainty bounds |qi| ≤1 for i = 0, . . . , n. When 
dealing with an interval family, the shorthand notation 

( ) [ ]∑
=

+==
n

i

i
ii sqqqsa

1
,,    (5) 

may be used with [qi
−, qi

+] denoting the bounding interval for 
the ith of uncertainty component of uncertainty qi. 

4.2  Analysis of robust stability  

In order to use the Kharitonov theorem [5] for robust stability 
analysis, polynomials associated with an interval polynomial 
family A have to be defined at first. In the definition below 
the polynomials are fixed in the sense that only the bounds 
qi
− and qi

+ enter into the description but not the qi them-
selves. The number of polynomials is four and they are 
independent on the degree of a(s, q). Associated with the 
interval polynomial family (5) are four fixed Kharinov poly-
nomials [5] 
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The interval polynomial family A with invariant degree is 
robustly stable if and only if its four Kharitonov polynomials 
(6) are stable. 

4.3  Decription of PI controller synthesis  

The method of a robust PI controller synthesis [10] is based 
on plotting the stability boundary locus in the (kp, ki)-plane 
and subsequent finding of stabilizing PI controllers. The 
method locates all PI controllers, which stabilize the con-
trolled system with interval uncertainty. The stability bound-
ary divides the parameter plane ((kp, ki)-plane) into stable 
and unstable regions. The stable ones can be determined 
by the choice of a test point within each region. 

4.4  Robust PI controller synthesis I  

Consider the control system in Figure 2, where Gs(s) repre-
sents the controlled process with the transfer function 
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and C(s) represents the feedback stabilizing PI controller 
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s
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with kp = ZR and ki = ZR/TI, where ZR is the gain of the con-
troller and TI is the reset time of the controller. The closed 
loop characteristic equation can be written by substituting 
s=jω in the form 
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The parameters of PI controller can be easily obtained by 
equating the real and the imaginary parts of the characteris-
tic equation (9) to zero, for details see [12]. Equating the 
real and imaginary parts of (9) to zero leads following ex-
pressions for calculating of kp, ki in the dependence on the 
frequency ω  
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Fig.2 Control system  

4.5  Robust PI controller synthesis II  

Consider further the control system in Figure 2, where Gs(s) 
represents the controlled process with the transfer function 

( )
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and C(s) is the feedback stabilizing PI controller (8). The 
closed loop characteristic equation after the substitution 
s=jω is 
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Equating the real and imaginary parts of the characteristic 
equation to zero gives following expressions for calculating 
of kp, ki in the dependence on the frequency ω 
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5.  Pole-placement method  

For the control system in Figure 2, where Gs(s) represents 
the controlled system of the 2nd or the 3rd order and C(s) 
represents the PI controller (8), the closed loop characteris-
tic equation can be 
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where ξ is the relative damping, ω0 is the natural undamped 
frequency and −c1 is the pole of the closed-loop system [2]. 
The closed loop characteristic equation for the considered 
controlled systems (7) or (11) and the PI controller has the 
form 
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After the suitable choice of ξ, ω0, c1 and comparison of 
coefficients in (14a) and (15a), the parameters of the PI 
controller can be computed as follows 
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Simularly, after the suitable choice of ξ, ω0, c1 and compari-
son of coefficients in (14b) and (15b), the parameters of the 
PI controller can be computed as follows 
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pole-placement method was used for the nominal model of 
the controlled process with following values of identified 
parameters: the gain K = 0.97, the time constant T = 10.3s 
and the transport delay Dnom = 24.0s. 

6.  Results  

6.1  Application of robust controller synthesis I and 
pole-placement method  

The identified transfer function (1) of the laboratory process 
was modified by approximation of the transport delay. The 
term representing the transport delay in (1) was aproxi-
mated by its 1st order Taylor series expansion of the nu-
merator. So, the modified transfer function has the form (7) 
where 
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It can be stated according to (18) that the controlled process 
is a system with parametric interval uncertainty. 

The parameters of robust PI controllers were found by the 
method described in the part 4.4 and 5. 

In the stability region (Fig. 3) were found parameters of PI 
controllers (16) for following choice of characterictic equa-
tion parameters: ξ = 0.77, c1 ∈ [0.42 : 0] and ω0 ∈  [0 : 
0.10]. Found kp and ki lie on the magenta line in Figure 4. 
From designed kp, ki parameters, two PI controllers were 
chosen: C1 with ξ = 0.77, c1 = 0.12 and ω0 = 0.03, and C2 
with ξ = 0.77, c1 = 0.11 and ω0 = 0.02 (Tab. 2) (green stars 
in Figure 4). 

 ZR TI 
C1 0.10 7.0 
C2 0.20 29.1 

Tab.2 The parameters of PI controlers I 

The robust stability of the designed feedback control loop 
was also tested and the Kharitonov theorem was used. The 
characteristic equation of the feedback control loop is 

( ) ( ) 01 =+ sGsC s          (19) 

where parameters of Gs(s) are given in (18) and parameters 
of C(s) are given in Table (2). Four fixed Kharitonov poly-
nomials for the characteristic equation were created accord-
ing to (6) and their stability was tested. The command kharit 
from the Polynomial Toolbox was used and the result of this 
test is, that the polynomial on the left side of (19) is robustly 
stable. It means that the feedback control loop with de-
signed controllers is robustly stable. 
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Fig.3 Stability region for (18) 
 

 
Fig.4 The position of controllers in the stability region 

for (18) 

6.2  Application of robust controller synthesis II and 
pole-placement method  

The identified transfer function (1) was modified by ap-
proximation of the transport delay. The term representing 
the transport delay in (1) was substituted by its 1st order 
Taylor series expansion of the denominator. So the transfer 
function has the form (11) where 
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According to (20), it can be stated, that the controlled pro-
cess is a system with parametric interval uncertainty. 

The parameters of robust PI controllers were found by the 
method described in the part 4.5 and 5. 

In the stability region (Fig. 5), parameters of PI controllers 
(17) were found for ξ = 1.1, c1 ∈ [0.12 : 0.06] and ω0 ∈ [0 : 
0.05]. Found kp and ki lie on the magenta line in Figure 6. 

From designed kp, ki parameters was chosen the PI control-
ler C3 with ξ = 1.1, c1 = 0.09 and ω0  = 0.03 (Tab. 3)(green 
star in Figure 6). 

 
 ZR TI 
C3 0.50 34.3 

Tab.3 The parameters of PI controler II 

 
Fig.5 Stability region for (20) 

The robust stability of the designed feedback control loop 
was also tested using the Kharitonov theorem by the way as 
it was described in the previous section. The result of the 
test confirmed that the polynomial (19) is robustly stable. It 
means the feedback control loop with the designed control-
ler C3 is robustly stable 

 
Fig.6 The position of controllers in the stability region 

for (20) 

6.3  Control of laboratory process  

The laboratory process was controlled using the robust PI 
controllers (Tab. 2) and (Tab. 3). These controllers were 
implemented via the control system SIMATIC. 

Time responses of the closed loop with the controlled proc-
ess with different values of the transport delay and the PI 
controller C1 are shown in Figure 7, where w is the setpoint 
and Dmin, Dmax, Dnom are minimal, maximal and nominal 
transport delays. 
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Fig.7 Time responses for controller C1 

Time responses of the closed loop with the controlled proc-
ess with different values of transport delay and the PI con-
troller C2 are shown in Figure 8, where w is the setpoint and 
Dmin, Dmax, Dnom are minimal, maximal and nominal transport 
delays. 

 
Fig.8 Time responses for controller C2 

Time responses of the closed loop with the controlled proc-
ess with different values of transport delay and the PI con-
troller C3 are shown in Figure 9 where w is the setpoint and 
Dmin, Dmax, Dnom are minimal, maximal and nominal transport 
delays. 

Conclusions   

The electronic model was identified as the process with 
interval uncertainty in the transport delay. For this process, 
robust PI controllers were designed by combination of two 
methods: the method based on the stability boundary locus 
in the (kp, ki)-plane and the pole-placement method. Adding 
the pole-placement method to the robust PI controller de-
sign offers the possibility to assure the prescribed behavior 
of the closed loop given by the choice of ξ, c1 and ω0. De-
signed controllers were implemeted for control of the labora-
tory process using the control system SIMATIC. Obtained 
experimental results confirm that the designed robust PI 

controllers are suitable for control of real processes with 
varying transport delay.  

 
Fig.9 Time responses for controller C3 
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About Grid Supported Learning 
Environments and Collaborative 
Virtual Control Laboratories 

Christian Schmid 

Abstract 
In this article, grid technologies are introduced to build e-learning environments for 
virtual laboratories to be used in control education. Service-oriented grids open new 
fields of applications, the Learning Grids. The learning services concept and their 
deployment through grid technologies are excellent means to integrate virtual 
laboratories into collaborative e-learning environments for control engineering 
education. An introduction into this area, a review of the grid techniques and 
example applications from a virtual laboratory demonstrate grid based solutions. 

Keywords: Collaboration, Engineering education, Learning Grid, Learning systems, 
Virtual laboratory. 

 

1. Introduction 

The current generation of electronic learning (e-learning) 
solutions has adopted the rather narrow pedagogic 
paradigm of information transfer, which features the teacher 
as someone who selects particular pieces of information 
and makes them available to students on the Web. 
However, there is no evidence that this approach to 
technology enhanced learning is in anyway effective. It has 
been adopted simply because it is an easy way to use the 
Web’s facilities. As soon as the learner tries to mediate the 
personal knowledge with the others, to compare the results, 
and finally tries to use the synergy between personal and 
collective construction of knowledge, he has to fall back to 
conventional communication channels. The current 
solutions mainly offer textual, or conference tools at the 
most. 

Remote or virtual laboratories with real or simulated 
experiments are becoming accepted in the engineering 
community for providing distance education and for 
augmenting traditional laboratories. Students have to modify 
instruments for a better understanding of the principle on 
which the plant operates. They even have to set their 
personal or within groups negotiated conditions in an 
environment for collaborative experimenting. From a 
pedagogical point of view, in this kind of environments the 
student has an active and central role in the learning 
process. In keeping them at the centre of the learning 
process, personalisation, individualisation and collaboration 
become relevant aspects to be supported by technologies 
through the creation of the right context. A learning grid can 
contribute to the achievement of these objectives through 
the definition of the learning services concept and their 
deployment through grid technologies. 

In the following an introduction into grid computing and into 
the Virtual Control Laboratory (VCLab) is given. Section 2 
describes the transition from computing to service-oriented 
grid and describes its main properties. Section 3 introduces 
into the specific properties of Learning Grids and Section 4 

goes into details of the implementation of main features of a 
Learning Grid using VCLab examples. Section 5 extends 
this on the area of collaborative learning in a grid supported 
environment and Section 6 summarizes the results. 

2. What is the Grid? 

The term grid is used here as a paradigm of the commonly 
known concept of power grids, where the consumer is not 
aware where and how the power is exactly produced. He 
only receives the final product with a defined quality of 
service from the plug in the wall. In case of a computational 
grid, the client receives the computational power not 
knowing where it comes from and what the resources are. 
When it comes to a service-oriented grid, the user receives 
the functionality he needs with the desired quality of service. 

Historically the term grid has been used describing a 
worldwide communication infrastructure for clustered 
computers, the nodes, that allows seamless transparent 
access to data and computing power on demand to solve 
large-scale computational problems. Such computing grids 
cost a fraction of what a supercomputer costs. They are 
commonly known from engineering, science and commerce. 
Grid is also a new paradigm for the information technology. 
The well known World Wide Web will be succeeded by the 
upcoming World Wide Grid. In this context a new type of 
grids, the service-oriented grids find applications in quite 
new areas not previously considered as the environments 
for a grid. An example of such a new area is education. This 
is the topic addressed in this article. 

2.1 Grid basics 

From a general point of view, a grid is considered as a 
collection of clustered computational machines, the nodes. 
In order to have a powerful supercomputer by a grid the 
computational problem has to be split into slices and 
assigned to these nodes. Each node processes its slice 
individually and after the completion of its slice the results 
are put back together. Grid nodes do not need to be placed 
in one geographic location; moreover, machines 
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collaborating in the grid may have different architectures 
and operating systems. It is obvious that these nodes need 
to communicate with each other based on some standards. 
Therefore a vital topic of security is involved for the 
interchange of data between nodes. Depending on the 
application the data should be kept confidential and 
protected from undesired external changes. Also other 
issues must be addressed, e.g. redundancy of nodes, 
quality of service and scalability. 

A grid shows some limitations and has to fulfil some 
requirements. The grid is applicable only for tasks that can 
be easily split into smaller slices and that do not require the 
characteristics of a real-time challenge. In order to reduce 
the complexity of a grid, a special layer is introduced that is 
for gluing the nodes on a logical level. This layer of software 
sandwiched between the operating system and the 
applications is commonly called middleware. Its spectrum 
ranges from execution environments responsible for the 
management of processes on nodes, to full development 
environments. What traditional grids lack, are the standards 
on that they are built. In most cases when considering 
computational grids, the methods of communication, the 
level of integrity between nodes and the architectures are 
each specially designed for a particular project. 

2.2 Service oriented grids 

During recent years a new approach for building grids has 
emerged. Instead of perceiving the grid nodes only as 
computational elements of an infrastructure they became 
providers of services [1]. This shift, from strict computational 
capabilities to service suppliers, opens new fields of 
applications for grids. The nodes, instead of only delivering 
their computational and storage capacity, are now regarded 
as providers of particular services. They may be parts of 
some code existing in multiple instances allowing the 
parallelization of the execution of an application. The nodes 
may offer individual services best suited to their own 
capabilities. Moreover, services developed for the usage in 
one application or grid may be reused in new applications. 
The service-oriented approach has additional advantages. It 
introduces well-defined standards, allows the creation of 
searchable catalogues of services. Further details are 
described in Section 2.3. 

Figure 1 presents basic interactions between elements of a 
service-oriented grid. Services published into a Grid 
Registry are queried and when discovered then instantiated 
depending on the user request. Mainly for sake of efficiency 
the client’s communication with the service is direct but may 
also be virtualized. 

 

Fig.1 Structure of a service-oriented grid environment 

2.3 Technology and standards 

The realization of service-oriented grids needs clear 
standards to have that interoperability of grid elements and 
their reuse in other applications. The two main organizations 

involved in standardization of grid technologies are the 
Open Grid Forum [2] favouring the family of the Open Grid 
Services Architecture [3] standards and to some degree the 
competing Organization for the Advancement of Structured 
Information Standards [4] promoting the Web Services 
Resource Framework [5] standards. Both organizations 
adopt the currently widely recognized Web services and 
their extensions as their building blocks. These families of 
standards differ in the depth of the middleware integration, 
in the choice of the platform and in the programmatic 
languages of the implementation. But their general 
approach towards the grid is the same. 

The main functionalities delivered by the middleware of a 
service-oriented grid are: 

Location – allows the determination, whether the required 
service exists and at which locations it is accessible. 

Instantiation – allows the instantiation of the service on that 
host, which matches the capabilities required for the service 
running with a given quality of service. 

Orchestration – allows the dynamical composition of more 
complex services. 

In the examples shown in this paper, the middleware called 
GrASP [6] is used, which was developed in an EU funded 
project. It follows the OASIS recommendations based on the 
implementation of the WSRF called WSRF.NET, which uses 
Microsoft’s .NET Framework as the implementation 
environment [7]. 

3. Learning Grids 

Grids yield significant benefits to applications. The question 
to be answered here is what advantages may yield a grid 
particularly to educational systems. 

3.1 Learning Objects (LOs) and Units of Learning (UoLs) 
in a grid environment 

In the concept of using LOs the learning content is split into 
reusable elements. These elements are used to build 
complex learning resources. In the world of service-oriented 
grids the LOs are becoming fully functional services with 
their own user interface. They are independently 
interoperable blocks, which may be used as they are, or, 
moreover, are reused to build new more complex blocks 
using other grid services, e.g. orchestration. LOs 
themselves can be nested. For illustration consider the 
complex LO example from Figure 2. Delivering a nested LO 
for an experiment several components are necessary and 
each of them is implemented as a separate LO. The 
required components would be: the LO rendering the 
experiment environment, the LO displaying an Excel 

Top-level LO
Experimenting 1

Experiment 
environment

Scope

Excel 
worksheet

Experimenting x

Experiment 
environment

Scope

. . .

 
Fig.2 Example showing an arbitrary nesting of LOs 
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worksheet for evaluating results and a scope LO displaying 
the experiment signal histories. These components would 
be embedded into another LO, therefore constituting a new 
composed unit called e.g.: Experimenting 1, which itself 
could be nested in a more general LO. Due to the well-
defined grid standards, the learning courses can be built 
from LOs delivered by different grid services. The grid 
techniques offer the capabilities of cataloguing and easy 
managing LOs by using metadata. 

Metadata for describing LOs and ontologies for the semantic 
modelling of the learning domain can be used to build and 
execute distributed learning applications on a Learning Grid. 
They take the form of UoLs. Each UoL is described by an 
ontology, which defines the set of concepts to be taught. 
Each concept corresponds to a Learning Object (LO) that 
constitutes the learning material. The ontology describes the 
order in which the LO will be delivered to achieve the 
teaching goal for a learner. Each UoL realizes a certain 
learning model, which is modelled by the ontology. The LOs 
represented by UoLs and combined with the learner specific 
requirements are being delivered personalized by a suitable 
IMS-LD player [8]. 

3.2 Collaboration and communities 

The use of a common platform allows a better collaboration, 
both in sense of interpersonal communication for 
collaborative learning, as well as collaboration between 
applications existing within the grid. A Learning Grid is a 
natural environment for its participants to create virtual 
learning communities for collaborative experimenting. All 
participants belong to the same community of grid users 
sharing the same tools, creating and sustaining professional 
relationships through time. 

3.3 Scalability 

An outstanding advantage of a Learning Grid environment is 
the approximately linear scalability inherited from its 
predecessor, the computing grid. When the number of 
students enrolled to a particular course gets larger, more 
instances of a particular service will be created on the hosts 
within the grid. When additional hosts are needed they do 
not have to belong to the same university or run the same 
operating system as long the services are implementing the 
same interface. Figure 3 illustrates the characteristics of the 
average response time observed when only one node or n 
nodes are available on the grid related to a particular 
service. Grids may grow from few resources to millions. In 
principle, there is no restriction in size, but the availability 
and latency of resources must be observed. 

Number of users

Average response time

1 node

n nodes

 
Fig.3 Average response time characteristic depending 

on the number of users of a particular service 
available from one or more than three nodes on a 
grid 

3.4 Personalisation 

A very important feature of a Learning Grid is the fact that it 
can deliver learning contents from heterogeneous resources 
in a unified fashion and personalised according to the profile 
of the learner. The following procedure is in analogy to the 
power grid. A learner with a well-defined profile introduces 
himself to the Learning Grid and requests some contents 
relevant to his learning needs. The Learning Grid starts here 
to find the best suitable service for the learner’s needs. This 
would match closely as possible the user’s profile taking in 
account the user’s location, language skills, level of 
advancement in selected topic, preferred form of delivering 
content, etc. 

3.5 Virtual Organizations (VOs) 

One of the main advantages of the new grid technologies is 
their capability to integrate heterogeneous environments to 
an abstract entity. This property can be used to group 
resources of different universities to build a VO, e.g. a virtual 
university. Such an approach would allow specialization of 
universities in concrete areas and sharing the best offer with 
other universities. 

4. VCLab as a Grid Supported Virtual 
Laboratory Environment 

The VCLab [9] has been originally developed as a generic 
tool to support students in control engineering using 
professional design and simulations of process automation. 
It uses a 3D virtual user environment to recreate and to 
visualize experimenting plants. One can interact with a 
displayed scene in a similar fashion like with real devices. 
The dynamical behaviour of the plant is generated by a 
simulator driven by simulation models. VCLab has in its 
repository the generic components and services necessary 
for building LOs for experiments on a Learning Grid of the 
control engineering domain. The grid supported 
implementation of VCLab is an appropriate case study to 
present the introduced properties of service-oriented grids in 
a practical manner to the control community. 

4.1 Architectural perspective of the grid implementation 

VCLab is deployed on the ELeGI grid [10] by IWT [11], 
which is a content and user management system and 
includes a portal. For learners registered through its portal, it 
provides a personalized profile, which must be compatible 
with the IMS Learning Design specification [8]. These data 
describe the learner as well his preferences regarding the 
social context and learning styles. From the technical point 
of view, the profile is a standardized data structure. It is 
being used in two ways. First, it allows making a better 
choice regarding the content that should be provided to the 
learner; second, it also allows adjusting the selected content 
depending on the learner preferences. 

The VCLab components are integrated as LOs into the IWT 
framework by using drivers. The procedure of the 
instantiation of VCLab components as LOs is presented in 
Figure 4. When the learner decides to take part in a course 
that uses VCLab resources, the portal receives a request to 
create the instance of the particular LO. The portal 
combines the original request with data withdrawn from the 
learner’s profile and submits the created request document 
to the grid, in this instance to the GrASP middleware. 
GrASP searches for the best service and best service 
provider matching the request and instantiates the driver 
service. The driver service returns the portlet which renders 
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the LO for the learner depending on the personalization 
definitions in the learner’s profile. 

In order to understand the benefits of the VCLab on the grid, 
the architectural perspective of implementation and the 
interactions between the services are presented. Figure 5 
shows the services, on which the functionality of the VCLab 
is based and their interrelations with the elements of the grid 
infrastructure. VCLab consists of two services, Computation 
and Simulation. Their operation is orchestrated by the Driver 
Service, which implements that interface necessary for an e-
learning application. 

The Grid Catalogue plays a central role on the grid, which 
contains the metadata describing both, the services 
incorporated within the grid and the stored resources. 

When a user is accessing a grid application, it identifies the 
user and obtains his profile. Then the application uses the 
Grid Catalogue to provide the list of the resources matching 
the learner queries and the profile. When the user chooses 
a UoL to work with, the e-learning application contacts the 
Grid Catalogue, which provides the list of services required 
to deliver the resource to the user. In the case of VCLab 
such a service is the Driver Service shown in Figure 5, 
which implements a particular interface understood by the e-
learning application. Such a driver service takes the control 
over the execution of the resource and requests the 
required services from the catalogue. In the VCLab case 
these are the Simulation and Computation Service within a 
Simulation LO. 

This grid architecture shows a high degree of separation of 
services during the implementation and favours the 
extensibility of the application itself. The e-learning 
application needs not to be aware of the services used by 
VCLab; it only needs to find a suitable driver for a particular 
LO to be delivered. 

4.2 The Learning Model for Experimentation 

Achieving a successful integration is not only performed on 
a technological level, but also in regard to pedagogical 
aspects. For this purpose a generic model for the delivery of 
virtual experiments has been developed, which can be 
applied to control engineering experiments. This model 
splits a UoL into four macro phases: Presentation, Practical 
Situation, Abstract Situation and Institutionalization phase, 
see Figure 6. 

uses uses

LO Driver Service

Computation 
Service

Simulation 
Service

Grid
Catalogue

e-Learning Application

execute

results

query

query

response

response

Simulation
LO

 
Fig.5 VCLab grid architecture 

The phase of Presentation provides the description of the 
didactic experience that the learner is about to start. To 
such aim, the description of the different phases, the 
necessary information for the learner about the character 
and goals of the experiment and about the general 
reference regarding the operation of the software will be 
provided. 

The Practical Situation represents the phase in which the 
learner live the concrete experience. Simulation and the 
presence of a collaborative environment are available in 
which the personal learners’ experience can be mediated 
from the interaction with the other learners. This phase has 
an iterative character and consists of five micro phases: 

Active Situation – A fascinating and interactive scene in 3D 
is proposed, inside of which the learner will be able to move 
and manipulate objects. Simulations are run by a series of 
controls that the learner can opportunely vary, modifying in 
real time the behaviour of the simulation, observing its 
response and actively gaining personal knowledge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Process of instantiation of a Learning Object from VCLab in a Learning Grid. 
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Fig.6 Learning model for experimentation 

Collaboration – During this phase the learner has the 
possibility to mediate the personal knowledge with the 
others, to compare the results, and finally use the synergy 
between personal and collective construction of knowledge. 

Assessment – This micro phase marks the transition from 
action to opinion by giving the learners a variety of 
questions to judge the current validity of the learning 
process. If the output is not adequate a possibility is offered 
to enter in a facilitated didactic situation, which leads to the 
phase of the Addressed Situation. The learner can enter 
again into the phase of Active Situation or Collaboration in 
order fill own gaps. This ends in a further assessment with a 
loop back if not successful. Otherwise the phase of 
Knowledge Institutionalization is entered. 

Addressed Situation – This optional phase, to which 
learners may be redirected in case of an unsuccessful 
Assessment, may provide an altered version of the Active 
Situation and give additional hints which should allow a 
facilitated understanding of the experiment. 

Knowledge Institutionalization – It is the last micro phase of 
the Practical Situation when the knowledge validity is shown 
to the learner with a correct solution and a list of concepts 
which should be known after completing this activity. 

The Abstract Situation macro phase is to extrapolate from 
the previously context an abstract model. It consists of the 
same micro phases as the Practical Situation and its 
execution is governed by the same rules. But instead of the 
simulation of a concrete case the activities will be set up on 

a greater interaction between theory and practice to induce 
the learner to test knowledge in order to achieve new goals. 
For example instead of a 3D scene in the Active Situation, 
e.g. the learner has to deal with a set of equations 
describing the experiment. 

Finally the macro phase of Institutionalization provides the 
means for organizing and formalizing the acquired 
knowledge. 

4.3 UoLs for VCLab 

Implementing this learning model using the LO and UoL 
paradigm allows the building of a library of reusable learning 
units. Each object described by metadata is being easily 
catalogued and can even be dynamically bound for learning 
content delivery. UoLs are described by an ontology, which 
defines the set of concepts to be taught. Each concept 
contains LOs that constitute the learning material. In a 
situation, when a teacher has to explain to students how 
process control works, the plant is described by a LO. The 
teacher has a manuscript and makes a storyboard with 
items to be taught. To achieve a successful teaching 
process those items are structured according to phases of 
the learning model presented above. 

The content managed by the IWT portal uses IMS-LD 
standardized forms of UoLs. This introduces an abstract 
layer over the technological aspects of resources in which 
authors can create their learning content in pedagogical 
instead of technical terms. This specification describes the 
recipients of a particular resource, the resource 
requirements in the sense of services required for 
executions, and the dependencies between resources. 

For VCLab each UoL is described by an ontology, which 
defines the set of concepts to be taught. Each concept 
corresponds to a LO that constitutes the learning material. 
The macro phases from Section 4.2 are delivered as a 
single LO or as a series of LOs. The ontology describes the 
order in which the LO will be delivered to achieve the 
teaching goal for a learner. Each UoL realizes the learning 
model, which is modelled by the ontology. The LOs 
represented by UoLs and combined on the fly with the 
learner specific requirements are being delivered 
personalized by the IMS-LD player. 

A section of an active learning session example with LOs 
from VCLab is shown in Figure 7. A web browser is used 
and the screenshot shows a section from the beginning of a 
nested Active Situation LO. Other sections, like assessment 
and addressed situation are not shown here. The example 
is taken from a beginner UoL for modelling Torricelli’s law. 

The middle part contains the active 3D laboratory scene LO, 
where four pipes of different diameter can be filled by 
pumps with water to a given height. In the lower part of 
these pipes outlet valves of different diameter can be 
opened to let the water flow to the floor. The learner 
interacts with the experiment using this scene. 
Measurements are taken using a tape measure and a 
measurement grid on the floor and using a watch clock at 
the top of the scene. The scene is completely animated by 
the simulation service. The upper part deals with the relation 
between the trajectory of the water outflow and the exit 
velocity. The learner has to specify in this LO this relation in 
symbolic notation. The Formula editor is for entering the 
formula into the small window on the right-hand side. The 
symbolic user input is checked by the computation service 
and used below in the Excel sheet LO to covert the user 
measurement data into exit velocity data. The Excel 
diagram is for illustration purposes. 
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Formula editor 

Excel sheet 

Active laboratory scene

Excel diagram

 
Fig.7 Screen shot section of a VCLab session 

4.4 VCLab grid resource 

The LOs realizing the macro-phases of the learning model 
in a UoL are generated using the VCLab Resource. Figure 8 
presents the general structure of this very generic resource. 
It consists of a set of optional abstract elements whereby 
some of elements may occur in multiple instances. 
Customizing this resource in a proper way will yield the 
different LOs of the learning model. The appearance is also 
fully customizable by the sequence of elements in the 
resource as shown for the example in Figure 9. 

The Descriptive text element is used to deliver information 
describing the elements that are placed above or below of it 
or may be used to present additional information. From the 
technical point of view this element is implemented as a 
HTML formatted text section. It may contain also active 
elements, e.g. Java applets, which are not standard VCLab 
Resource elements. 

 
Fig.8 VCLab Resource structure 

Descriptive
text

Experiment

Assessment

Scope

Embedded LO

Descriptive
text

Descriptive
text

Torricelli experiment

 
Fig.9 Appearance of elements in a VCLab Resource 

The Experiment element realizes the 3D virtual user 
environment. It animates the behaviour of the experimental 
plant in the 3D scene and provides the means of altering the 
experiment parameters through a set of buttons or sliders 
rendered as 3D objects. For this purpose a 3D player is 
used combined with invisible controls that animates the 
scene and intercepts events generated by the learner. The 
current version of the VCLab Resource provides a LO with 
one experiment at one time. But as later shown this 
resource can be cloned and used in a collaborative manner 
simultaneously by many users. 

The Scope element provides the possibility to display signal 
history plots in a similar manner like using an oscilloscope 
device. Several instances of Scope elements may be 
present showing in parallel different signals using different 
display modes and scaling parameters. 

The Assessment element defines a set of multiple/single 
choice questions or questions that needs to be answered by 
entering the answer in symbolic notation, e.g. by 
mathematical expressions. Answers may be associated to 
events defining modifications of the experiment parameters. 

Using the Embedded LO element the resource being 
created may also make use of already existing LOs to 
provide their functionality. Such an example may be LO for 
making notes of the measurements in an Excel sheet or a 
chat component for communication with other learners. 

4.5 Authoring VCLab UoLs 

Virtual laboratory models and its experiments require a large 
set of specifications for the related resources. Avoiding the 
error-prone and tedious work of authoring manually by using 
chains of several inhomogeneous tools an integrated 
authoring process of VCLab related grid resources has been 
developed starting from a manuscript or storyboard and 
supporting the process until to the final UoL. 

Figure 10 presents a typical composition of a single LO, 
which is used to realize a Practical Situation macro-phase 
from Section 4.2. It contains metadata describing its 
content, the usability feature for the learner and the 
definition for the grid service to be used for its execution. It 
also contains the necessary data files for its execution and 
references to other LOs, which may be embedded within 
this LO. 
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All tasks to build a UoL are performed by using the VCLab 
authoring tools as shown in Figure 11. These tools are of 
generic type to describe the simulation model, the 3D visual 
representation, the assessment and to compose all 
resources to a UoL to be published on the ELeGI grid. In 
addition, these tools are itself grid resources published as 
grid services available for authors. 

 
Fig.10 A typical composition of a LO and its authoring 

The creation of the Experiment resource is more laborious 
and happens in two stages. First, the experiment has to be 
described by a simulation model in using hierarchical block 
structures consisting of a set of differential and algebraic 
equations. The simulation parameters can be defined such 
that they can be manipulated by the learner. The simulation 
results are directed for animation or plotting in real time. 
This stage is performed by the Simulation Model Authoring 
Tool, which contains a graphical user interface for 

constructing simulation diagrams. 

Complex mathematical expressions may be added by 
embedding the HotEqn resource [12], which interprets 
LaTeX expressions dynamically and renders them 
accordingly. 

Second, the Visual Objects Authoring Tool is used to 
generate the 3D model for the visual representation of the 
experimental plant. Then the elements of the 3D model are 
bounded to the inputs and outputs of the simulation model. 
The creation of the Assessment resource is supported also 
by the Assessment Editor. This gives direct access to visual 
elements, which are controlled depending on the answers to 
provide information for the Addressed Situation. 

The implementation of the Active Situation in the Abstract 
macro-phase is performed by the Scope element, which is 
integrated with the simulation model. Signal outputs 
generated by the simulation model are directed to the Scope 
element. 

At the final stage the Resource Editor is used to mount all 
the resources together into one LO and make it available for 
the direct deployment into the grid environment. 

4.6 A process control example 

In the following a short example of a UoL about 
experimenting with a thermo-fluid process of a chemical 
plant is shown taken from [13], which exists in reality at 
Ruhr-Universität Bochum, Germany, see Figure 12.  

A chemical plant is described by its construction model and 
physical model. The construction model defines parts of the 
model such as a pump or a valve and the physical model 
defines how they interact with each other and describes 
their dynamical behaviour by differential and algebraic 
equations. As shown in Figure 13 the thermo-fluid 
subsystem consists of four storage tanks T1, T2, T3 and T4, 
two main tanks TM and TB, one reaction tank TS, waste 
tank TW, heaters, two pumps and several valves all 
together connected by a pipe system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 From a virtual laboratory idea to a UoL. 
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The thermo-fluid subsystem including the control system 
and the physical constraints is described by a simulation 
model. It is built based on principles and laws for all the 
components as a fluid process (laminar, Torricelli flow, …) 
for tanks and pipes, valves and pumps. It is a dynamical 
system described by a system of differential and algebraic 
equations. 

The VCLab authoring tools are used for specifying the entire 
simulation model, to generate the visual objects of the 3D 
model, to design the assessment and finally to compose the 
entire UoL. Figure 14 shows the screenshot of a learning 
session composed of several basic LOs. An active situation 
with a laboratory scene LO, several Scope LOs and an 
assessment LO with symbolic facilities are here used for 
exploring the dynamical behaviour of this process and to 
control it. The experiment flow is influenced by the 
assessment. Depending on the learner answers the 
scenarios can vary. An ontology used for building the UoL 
allows the easy navigation between the learning contents 
and assures their delivery in the right order according to the 
learning model from Figure 2. 

4.7 Learner perspective of the grid implementation 

From the learner perspective, the grid implementation 
simplifies the delivery process of the resources, in the sense 
that it removes the burden on the user of possessing and 
handling demanding software and hardware. The required 
hardware is always accessible; the higher complexity of the 
resource is compensated by the choice of a suited 
execution node, which is performed automatically by the 
grid infrastructure. The software for calculations and 
simulations is also always up to date because it is located 

on the server. Because of the server-sided execution the 
delivered content may be richer in details. Each LO of a UoL 
being executed may run on a different server. Therefore, the 
UoL can contain several LOs executing in parallel, what 
would not be possible in case of a conventional client-sided 
execution model. This property is especially important in 
case of Collaborative Learning described in detail in the 
following section. 

It is especially important that the Learning Grid offers a 
personalized approach of learning in form of an activity. The 
learner profile carried together with the requests to the grid 
makes all experiences suited to the learners needs. The 
delivered content depends on the courses already taken 
and on the general advancement of the learner in a 
particular topic. Preferences, like language of content and 
its form: text, audio, video or their combination may be taken 
into account during delivery. As the progress made by the 
learner is hold in his profile, he may access the learning 
activities from any computer without caring for the 
synchronization of the context. The learner is not anymore 
bound to a particular workstation and his profile follows him. 

Not only is the choice of the presented content affected, but 
also the overall quality of service. The right selection of the 
nodes for operation on an appropriate geographical location 
with respect to the learner results in faster response times. 
This is particularly important in case of animation, e.g. for 
real time experiments. Equipping the nodes with different 
kind of services allows a better user balancing and 
scalability. It is common that the enrolment to particular 
courses changes over time and even during semesters. The 
grid can adapt itself automatically to the demand for 
services. 

 
Fig.12 Chemical plant VERA at Ruhr-Universität 

Bochum, Germany 
 

Fig.13 Flow chart of the thermo-fluid subsystem 
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5. Collaborative Learning  
in Grid Environment 

An important aspect of learning in virtual environments is 
Collaboration, which is a micro phase in the experiment 
learning model of Figure 6. It is actually a scenario in which 
learning activities may benefit mostly from the Learning 
Grid. It is hard to implement rich collaborative environments 
capable of running several simultaneous experiments and 
supporting several groups of learners working together in 
parallel using the classical server centred approach. Even 
fastest server would very soon reach its limit in case of a 
large amount of simple simulations or in case of executing 
several complex ones. Distributed services on the grid 
remove these bottlenecks. This is addressed in the 
following. 

5.1 Architectural perspective of grid supported 
Collaborative Learning 

Collaborative e-learning applications start the execution 
querying the Grid Catalogue for a driver service that can 
perform collaborative experimenting, see Figure 15. The 
catalogue provides this application with the node hosting the 
service, which is suited for it and which can sustain the 
amount of potential users and embedded experiments 
offered by the environment. The corresponding Driver 
Service takes over the execution. It contacts the Grid 
Catalogue for instantiating the other Driver Services for the 
embedded Simulation LOs. A good granulation of the 
solution can be observed, mimicking the property of a 
conventional grid of splitting the tasks in small slices and 
assigning them to nodes spread on a grid. 

Fig.14 Screenshot of an example session. 
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Fig.15 Collaborative environment execution architecture 

For each instantiation of the Collaboration LO its supporting 
Simulation LOs may be delivered from different hosts 
depending on the current state of the grid and on the 
availability of the hosts. From the learners perspective there 
is no difference in learning experience what is assured by 
the quality of service constraints. 

The Collaboration Service benefits from the authentication 
and authorization facilities of the grid infrastructure by the 
Grid User Management. Looking up the profile of the learner 
it may determine his role within the environment. 

Collaborative experimenting using VCLab is based on a 
collaborative enhanced virtual laboratory scene as shown in 
Figure 16. The communication between the collaborating 
learners is based on two different types of information 
channels supported by the Collaboration Service. There is 
the 3D scene with the learner avatars, from where the 
participants can see and hear what the experimenting 
colleague is currently doing and to which gestures can be 
submitted as reactions. The other type of information 
channel is more classical. The Collaboration Service uses 
the Messaging Service. On default it is a textual chat, which 
may be replaced by binding another service to it providing 
audio or even video capabilities. This possibility is drawn 
from the architectural flexibility of the grid. 

5.2 The Learner perspective of grid supported 
Collaboration Learning 

The VCLab collaboration environment supports the full 
experiment learning model from Figure 6. It contains a 3D 
virtual scene including embedded experiments, see 
Figure 16. Participants of this virtual environment can be 
students of different universities participating simultaneously 
in the Learning Grid. They are represented by avatars and 
they communicate by means as shown above. 

One important aspect of defining collaboration in e-learning 
is the definition of roles of participants and the assignment 
of these roles to them. The VCLab models four distinct roles 
within the collaboration environment, see Figure 17. These 
roles are Author, Tutor, Learner and Experimental Plant. 
The Author does not directly take part in the collaboration 
activities. Its tasks are, preparing the environment by means 
of defining experiments, tasks for learners, instructions, 
designing graphics and so on. The Tutor is a privileged 

 
Fig.16 Screenshot of a collaborative activity. 
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participant of the collaboration activities. Its tasks are to 
provide the content to learners, to monitor their progress, to 
supervise experiments, to give hints, explanations and 
advice, to answer learners’ questions, which may occur 
during the learning process. The Experimental Plant 
represents the modelled knowledge, which learners should 
gain during experimenting with it. 

The learner role is described by a learner model. The 
learner is allowed to interact with the experiment in active 
(master learner) and in passive mode. An experimenting 
group may have a tutor and must have one student who is 
the master. The master is actively experimenting while the 
others are passive. The master’s role can be passed to 
each of the participants to control the plant. Such a virtual 
meeting place could be the seed of creating a virtual 
learning community within a VO. 

 
Fig.17 Collaboration roles 

Another feature of this environment is that besides 
simultaneously running different experiments, a learner can 
dynamically plant its own experiment into the environment 
that he is working on. So it can be observed by fellow 
students and by the tutor. The Tutor can take over the 
control and make a demonstration, which changes will be 
reflected in the original learner experiment. After leaving the 
collaboration micro phase, the learner may continue its 
session regarding to the learning model. This example of 
dynamical binding is only possible due to the dynamic 
nature of the grid. 

6. Conclusions 

Learning Grids contribute to the achievements of the 
objectives given in the introductory chapter to this article 
through the definition of the learning services concept and 
their deployment through grid technologies. Learning 
services will be consumed in dynamic virtual communities 
based on communications and collaborations where 
learners, through direct experiences, create and share their 
knowledge in a contextualised and personalised way. This 
way of learning using grid resources can become now more 
open to learners in the engineering domain. From the 3D 
visual representation the learner can get the information 
about the plant more effectively than only from 2D scopes or 
only from a textual representation. The presented solution is 
complete and may be regarded as a proof of the concept for 
a Learning Grid. 

The topic that is equally important but not discussed here is 
the authoring of the content of the grid supported Virtual 
Environments. VCLab provides a set of graphical authoring 
tools, which are self grid applications. They create 3D 

scenes, simulation models, the composition of them with 
supporting elements like Java applets, HTML text, and 
automating it with online assessments to produce 
addressed situations. The creation of collaborative 
environments is supported by composing previously created 
experiments with static elements of the environment and 
defining the roles of participants. 

The application of grid technologies in education is of 
course a much wider topic than presented in this article and 
by the practical example of a virtual laboratory. Nonetheless 
the most important aspects of utilizing service-oriented grids 
in distance learning for engineering education are 
presented. 
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Input shaping filters for the control 
of electrical drive with flexible load 

Martin Goubej, Radek Škarda, Miloš Schlegel 

Abstract 
This paper deals with control of flexible mechanical systems. The goal is to modify 
the input signal in order to minimize the residual vibrations excited during a motion of 
a system with flexible parts. The filter is designed in the time domain via impulse 
function analysis. Possible application of the proposed solution is demonstrated on 
two examples of flexible system - control of a crane with hanging load and an 
electrical servo drive with attached flexible shaft. The effect of nonlinearities in the 
signal path caused by saturation of the servo loop controllers is studied. Various 
possibilities for the placement of the filter are discussed. 

Keywords: Residual vibration control, input shaping, crane with load, flexible shaft, 
motion control  

Introduction  

The control of flexible structure systems such as cranes or 
robotic manipulators introduces serious problem with 
residual vibrations. These motion-induced oscillations are 
caused by the flexible parts of the system and need to be 
attenuated in order to obtain precise behavior of the 
controlled system. 

Generally, there are three possible approaches to suppress 
the unwanted vibrations. These include mechanical 
damping, active feedback control, open-loop filtering 
methods and their various combinations. Mechanical 
components such as silent-blocks or spring-damper 
modules can be introduced into machine design in order to 
increase the stiffness of the construction. However, it is 
difficult to predict a dynamical behavior of the machine in 
the phase of design; moreover, mechanical dampers are 
difficult to tune and mean additional expenses. Closed-loop 
active damping methods can achieve very good results 
because of the feedback, which suppresses nonlinearities of 
the system and uncertainty in the mathematical model ([5]), 
([3]). The main disadvantage of this approach is the 
necessity of feedback sensors, complicated controller 
design and higher computational cost. On the other hand, 
the open-loop filtering methods use relatively simple 
algorithms to modify the input commands in the feed 
forward path in such a way that the resulting input signal led 
to the system does not excite the unwanted transient and 
residual oscillations. The advantage is simple design and 
absence of feedback sensors on the plant. The main 
drawback is the reduced robustness against uncertainty in 
the system model resulting from open-loop approach. 

This paper deals with the last mentioned approach and uses 
so called Zero Vibration filter (ZV filter) ([6]) for command 
shaping of flexible structure systems ([2]), ([1]), ([7]). The 
theory is applied to the problem of the motion control of 
electrical servo drive with attached crane with load or 
flexible shaft. 

1. Input shaping filter design  

A general n-pulse input shaping filter can be described in 
the form of impulse function:  
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Where iA  means amplitude of the i-th pulse and δ  is dirac 

function with it  time shift 

Response of the shaper in time domain can be determined 
by convolution with continuous input signal:  
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It can be seen, that the filter has the form of sum of time 

delayed values of the input weighted by coefficients iA . 

The original input command is convoluted with the input 
shaper and the resulting signal is then led to the controlled 
system. This situation is illustrated in Fig. 1.  

 
Figure  1: Responses of the systems without and with 
ZV filter. 
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The goal of the filter design is to choose the values of 

amplitudes iA  and time delays it  such that after the last 
pulse has been led to the system, the amplitude of excited 
residual vibrations is equal to zero. 

The design procedure will be illustrated for 2-pulse ZV filter 
and second-order system. 

Consider linear system described by transfer function  
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and two-pulse shaper with impulse function  
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The impulse response of serial connection of )(sIS  and 
)(sP  has the form 
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where )1(t  is Heavids function. For time 2> tt , it holds  
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It can be seen, that for minimizing the level of residual 
vibrations after the second pulse, the following expression 
has to be fulfilled  

0=22 SC +  (9) 

By substituting (8) to (9), we obtain a nonlinear equation for 

iA  and it , 1,2=i . With proper choice of values  

d
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the equation can be reduced to the condition  
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Next, we get the second condition because of a requirement 
of the unit static gain of the filter  

1=21 AA +          (12) 

By solving the algebraic equations (11) and (12) we get 
parameters of the filter:  
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It can be shown that those values are valid also for the 
systems with transfer function in the form  
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For the proper function of the ZV filter, the exact value of 
natural frequency and damping coefficient of the oscillatory 
part of the system has to be known. The error in the system 
model results in non-zero residual oscillations. If the model 
of the system cannot be determined exactly, more robust 
version of the shaper can be designed by adding additional 
condition.  

[ ] 0=22 SC +
∂
∂
ω

        (15) 

The resulting three-step shaper is so called Zero Vibration 
Derivative (ZVD) filter and achieves less sensitivity with 
respect to parameter variations at the cost of slower setpoint 
response of the system. 

2 Crane with load 

  
Figure  2: Schematics of the crane and vibration of its 
load. 

Figure  3: Schematics of the crane with electrical drive 
in Simulink. 

Consider an electrical driven cargo crane with hanging load 
(Fig. 2). Such a system is depicted in block diagram in 
Fig. 3. It consists of electrical part of the drive with position 
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and velocity feedback and an oscillatory second order 
system described by transfer function  

2

2 2

( )( ) = =
( ) 2
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V s sP s
V s s s

τ ω
ξω ω
+

+ +
      (16) 

where ω , ξ  are natural frequency and damping of the 

system, cV  is the speed of the crane, lV  is the angular 
speed of the hanging load 

The system (16) describes the relationship between motion 
of the crane and its load. The forces acting on the crane 
caused by the movement of the load are omitted with 
respect to the ratio of its mass. 

Figure  4: Schematics of the electrical servo drive in 
Simulink. 

 
Figure  5: Schematics of 2-step ZV filter in Simulink. 

The subsystem of the drive consists of three control loops in 
commonly used cascade structure (Fig. 4). The dynamics of 
the current loop is modeled as the first order system, the 
speed and position control is realized using standard PI and 
P controllers. The servo system contains also the feed 
forward inputs for planned trajectory following. A human 
operator sets the desired position of the crane *s . Without 
using an input shaping filter, the motion of the crane induces 
the residual vibrations of the load (Fig. 6). The swinging load 
can hit some obstacles and an operating personnel has to 
wait before the oscillations damp out and they can continue 
with a manipulation. Using the ZV input shaper (Fig. 5), the 
operator command leading to the servo drive is filtered 
(Fig. 7) and the resulting movement does not excite the 
oscillatory dynamics of the load (Fig. 8). 

 
Figure  6: Movement of the crane without ZV-filter. 

 
Figure  7: Comparison of the original and shaped 
command signal. 

 

 
Figure  8: Movement of the crane with ZV-filter. 

The great benefit of the proposed technique is, that shaper 
design can be made for the second order system of the 
swinging load and its filtering properties stay unchanged 
even after passing through the dynamics of the servo drive. 
However, this presumption is valid only in the case, that all 
the control loops of the drive work in the linear mode. If any 
of the controllers hits the saturation limits, the original 
filtered command signal is corrupted and the result is non-
zero amplitude of the excited residual vibrations. This 
situation is depicted in Fig. 9, where saturation has been 
placed to the current control loop. It can be seen, that the 
vibrations has not been canceled out completely due to the 
nonlinearity in the drive control loop. 

 
Figure  9: Movement of the crane with ZV-filter and 
saturated servo controller. 
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A possible solution of this problem is to add an superior 
system for trajectory planning. After the human operator sets 
a new desired position, this block computes the time optimal 
trajectory for the rest-to-rest movement with respect to 
limitations for velocity, acceleration and deceleration 
(optionally also with constraint for derivatives of acceleration 
and deceleration). The signals of desired position, velocity 
and acceleration led to the feed forward inputs of the servo 
controllers ensures the correct tracking of the planned 
trajectory and also prevent the saturation effect. This 
configuration is displayed in Fig. 10.  

Figure  10: Schematics of the crane with electrical drive 
and t-optimal trajectory generator (block AVS) in 
Simulink. 

The block AVS computes the desired trajectory, which is led 
to the servo drive controllers. The input shaper design 
remains the same, the filter has to be placed before all of 
the servo control inputs. Response of the system can be 
seen in Fig. 12. There are no residual vibrations even in the 
presence of nonlinearities in the servo control loop. All the 
controllers work in the linear mode, because of trajectory 
planning block. The resulting trajectory of the movement is 
no more time-optimal, nevertheless, it is suboptimal with 
respect to the demand for attenuation of swinging load 
vibrations. The important notice is that the filtered trajectory 
signal does not violate the default constraints for velocity, 
acceleration and deceleration due to the unity gain of the 
filter. Figure 11 shows the difference between t-optimal and 
real curves of position, velocity and acceleration. The 
presented example can be reduced easily to the case, 
where only the velocity of the crane and load should be 
controlled. 

 
Figure  11: T-optimal and ZV filtered trajectory for the 
crane. 

 
Figure  12: Comparison of the time-optimal and time-
optimal ZV filtered trajectory of crane. 

3 Flexible shaft 

 
Figure  13: Schematics of the flexible shaft. 

Consider a system consisting of electrical drive from the 
previous example and attached flexible shaft (Fig. 13). 
Dynamics of the system can be described by the set of two 
equations  
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211111

θθθθ
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&&&

&&&
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where 

21, JJ  are moments of inertia of the motor and the shaft 

21, BB  are coefficients of damping 

K  is torsion spring constant 

T  is torque 

21,θθ  are angular displacements of motor and the shaft 

The goal of the control system is to control the position of 
the shaft without exciting the residual vibrations on the 
flexible end. Here, the design of the filter is not so 
straightforward as in the previous case. The back 
propagation of the torque from the end of the shaft to the 
drive can not be omitted analogously to the crane. The 
entire system including the drive and flexible feedback has 
to be analyzed in order to find the frequencies, which have 
to be attenuated. 

Transfer function between setpoint command *s  and angle 
of the flexible end of the shaft can be derived from the block 
scheme (Fig. 14). The dynamics of the current loop can be 
omitted, because the electrical time constant of the drive is  
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Figure  14: Schematics of the flexible shaft with the 
electrical drive and ZV filter in Simulink. 

negligible with respect to mechanical time constant of the 
whole system. 
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where 

θKKKK IPt ,,,  are parameters of controllers 

*s  is position setpoint 

From the obtained transfer function, the location of the poles 
can be analyzed. For the typical configuration of the 
parameters, where servo control loops are set to achieve 
stable setpoint response without overshoot and presumption 
of 12 > JJ , the resulting system has two pairs of oscillatory 
poles and one stable real pole. In most cases, only the 
slower pole pair lying closer to the imaginary axis needs to 
be canceled out by the filter. The natural frequency and 
damping can be easily computed from the location of the 
poles. Next, the ZV filter can be designed. If the second pair 
of oscillatory poles still causes unacceptable level of 
vibrations, a second ZV filter for faster poles can be added 
and serial-connected to the first one. 

The problem with nonlinearities in the control loop due to 
saturation of servo controllers remains the same and also 
the solution is identical to the crane-load problem. For the 
proper function of the filter, trajectory planning block should 
be added to satisfy the demand for the linear function of the 
servo loop controllers. 

 
Figure  15: Comparison of the flexible shaft movement 
without and with ZV filter. 

Figure 15 shows the results of flexible shaft control. Figure 
on the top illustrates the control without the input shaper, the 
lower one with the ZV filter. Using the filter, the vibrations 
has been completely canceled out. 

4 Shaping filter in the closed loop 

Figure  16: Schematics of servo loop controllers with ZV 
filter. 

The input shaping filter can be placed also in the closed 
loop of the servo drive. The most suitable position for the 
filter is the speed controller loop (Fig. 16). The advantage of 
this approach is, that the saturation effect of the position and 
speed loop does not affect the filtering properties of the 
shaper. For every real electrical drive, the current loop 
contains saturation limits due to the limited supply voltage of 
the power inverter. Therefore, the value of the maximal 
current that the inverter is able to deliver to the motor is 
limited. This maximal value changes with actual rotational 
speed of the drive because of the back electromotive-force 
acting against the power supply. For the proper function of 
the filter, an artificial saturation block should be placed 
before the filter (Fig. 16). The saturation limits should be 
chosen in such a way that the output of the filter never hits 
the limits of the real saturation of the current loop. This 
ensures that the frequency band of the signal remains 
unaffected and the resulting motion of the drive does not 
excite the vibrations of the flexible load. Next, there exist 
some studies indicating the ability to suppress the 
measurement noise ([2]) . 

The main drawback is that the insertion of the filter 
introduces an additional dynamics, which can affect the 
behavior of the closed loop. For the large natural 
frequencies, which have to be attenuated, the delay of the 
filter can be small with respect to the dynamics of the drive. 
Smaller values of the natural frequency mean slower filter, 
which has to be taken into account while tuning the loop 
controllers. The effect of the filter inside the closed loop is 
illustrated in the (Fig. 17). The figure on the top represents 
the movement of the crane with load without the input 
shaper. The drive controllers are tuned in order to achieve 
fast setpoint response without position overshoot. After 
introducing the filter to the closed loop, the overall dynamics 
of the drive has changed and the result is the oscillatory  
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Figure  17: System response a) without ZV filter b) with 
ZV filter in closed loop. 

movement of the crane as displayed in the lower figure. 
Even if the drive does not excite the residual vibrations of 
the hanging load, the controllers need to be re-tuned in 
order to achieve desired setpoint response. The integration 
of the filter inside the closed loop can cause even the 
unstable dynamics. It can be assumed that by adding an 
additional delay to the system, the overall dynamics of the 
closed loop become worse. 

5 Conclusion 

This paper presents the applications of the input shaping 
filters to the control of electrical servo drive with attached 
flexible load. The goal is to minimize any transient and 
residual vibrations induced by the movement of the drive. 
Firstly, the Zero Vibration filter is derived. The next part 
presents its utilization for the control of a crane with hanging 
load and a drive with attached flexible shaft. The results 
show significant improvement of the closed loop behavior 
and attenuation of the unwanted oscillations. The ZV filter 
can be easily implemented in a real time control system and 
some studies show its better performance compared to 
conventional notch filters ([2]). In the case of model 
uncertainty, more robust filter versions can be designed at 
the cost of increasing the delay of the filter. Next, the effect 
of saturation of the servo loop controllers is discussed and 
the solution is proposed by adding a trajectory planning 
block. The last part deals with the possibility of placing the 
filter inside the closed loop of the drive. The advantages and 
drawbacks of this approach are discussed. 
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Appendix 

Parameters of crane with load model (16) 

nω  = 2 rad 

ξ  = 0.05 
τ  = 0.05 s 
M  = 1 kg 

Parameters of flexible shaft model (17) 

1J  = 1 2mkg ⋅  

2J  = 10 2mkg ⋅  

K  = 0.1 

21, BB  = 0.1 

Parameters of servo drive controllers (18) 

ϕK  = 1 

pK  = 3 

tK  = 1 

IK  = 0.05 
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A Neuro-Fuzzy controller for a 
trajectory following mobile robot 

Ivan Masár, Michael Gerke 

Abstrakt 
The design of a motion controller for a mobile robot can be a very difficult and 
tedious task, especially for robots with a complex kinematic structure. Even though 
several types of motion controllers have been proposed in literature, they are not 
always applicable on car-like mobile robots equipped with conventional steering 
wheels. The reason is, that it is generally not possible to derive an inverse kinematic 
model for such robots. In this paper, a self-tuning intelligent controller for a quasi-
omnidirectional mobile robot is presented. The controller is used to steer the robot 
following a desired trajectory. It is implemented as a neuro-fuzzy controller, which 
can adapt its parameters by a self-learning process in such a manner, that the 
mobile robot can follow a desired trajectory with required accuracy and speed. The 
process of controller parameters tuning is demonstrated on experiments with a 
quasi-omnidirectional mobile robot F.A.A.K. 

Kľúčové slová: 

mobile robot control, trajectory following, neuro-fuzzy controller 

Introduction 

A precise motion control is a primary assumption for a 
successful application of every mobile robot. During the last 
years, various control design methods have been developed 
for this purpose. The situation is relative easy for mobile 
robots with a simple kinematic structure (e.g. with two 
differential driven wheels), or for robots without non-
holonomic constraints, respectively. If their inverse 
kinematic model exits, it can be used to calculate the 
position and speed of every joint in the kinematic chain from 
the speed of the robot body. Therefore, a motion of the 
robot along a trajectory can be computed offline as a motion 
sequence of robot joints and links. In an ideal case, after 
applying of these partial motions, the robot would move as 
required. However, there are external forces acting on the 
robot during its movement (driving, centrifugal, friction, 
Coriolis and gravitational forces), that have to be 
compensated to follow the desired trajectory with high 
precision. For this purpose, the kinematic or dynamic model 
of the robot is used depending on requested precision of 
trajectory following. For simple applications, the kinematic 
model is usually preferred. The dynamic model of the robot 
is the base for a high precision motion control, but it is 
considerably more complicated than the kinematic model. 
Various model-based control systems for mobile robots can 
be found in [1], [2]. 
However, the problem with implementation of a model-
based control arises if the inverse kinematic model of the 
robot does not exist. Such a situation occurs by every car-
like mobile robot, i.e. if there are more wheels on a common 
axis or at least one steering wheel with the steering axis 
going through the contact point of the wheel with the floor. 
An example of a conventional steering wheel is depicted in 
Fig. 1. 
A motion of the robot body consists of two translations (in X- 
and Y-axis) and one rotation (about Z-axis). It can be 
expressed in the robot body coordinate system B  as 
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Fig. 1 Conventional steering wheel 
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where Wω  is a wheel rotational speed about X-axis (driving 
speed of the wheel), Cω  is a rotational speed of the wheel 
about Z-axis in the contact point with the floor and Sω  is a 
rotational speed about the steering axis. The matrix J  is 
called a wheel Jacobian and in the case, that the steering 
axis of the steered wheel goes through the contact point 
with the floor, it is defined as follows 

sin( )
cos( )
0 1 1

y y

x x

R d d
J R d d

γ
γ

− − 
 = − − 
 − 

, (2) 

where R  is a wheel radius and xd , yd  are distances of the 
wheel steering axis from the robot midpoint. 

Obviously, the matrix J  is singular and therefore it is not 
possible to derive the inverse kinematic model of the robot 
directly. A conventional steering wheel has less degrees of 
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The position of the robot body is defined in a global floor 
coordinate system F  as 

T

F x y zp p θ =  p  (3) 

The trajectory following error Le  is measured as the 
perpendicular distance of the robot midpoint to the 
trajectory, which is implemented using cubic splines. The 
control objective is to follow the trajectory with required 
forward speed and with minimal trajectory following error. 

FY

Fy

1

2

Trajectory

Le
S

Fx FX  
Fig. 7 Line following problem 

Neuro-Fuzzy Controller 

As mentioned above, it is not possible to derive an inverse 
kinematic model for this kind of mobile robots and therefore 
to compute the steering angles and driving speeds of the 
wheels directly from the desired trajectory. For this reason, 
we developed a neuro-fuzzy controller to solve the trajectory 
following problem.  

The main idea of the presented neuro-fuzzy controller is 
based on the fact, that it is possible to control the mobile 
robot following a predefined trajectory by a simple PD-
controller under certain conditions. Such a PD-controller 
controls the steering angles of the steering wheels 1γ , 2γ  
dependent on the actual distance from the trajectory. 
However,  this controller works properly only for a specific 
forward speed of the robot and for a limited maximal 
distance from the trajectory.  

To control the robot over its entire operating range, several 
PD-controllers could be designed. Every controller would be 
optimized for a specific working point defined by a forward 
speed of the robot. In addition, an supervisor logic would 
have to switch among PD-controllers according to the actual 
operating point. Nevertheless, such type of a switching 
causes well-known problems, like ejecting of control signal 
discontinuities and oscillations on the border between two 
working points, eventually instability of the control loop. 
Furthermore, the design of controller parameters for various 
operating points is not an easy task and requires many 
trials.  

Therefore, we fused several PD-controllers with switching 
logic to a fuzzy logic controller (FLC), which changes the 
parameters of the PD-controller continuously according to 
actual conditions. The rule base of the controller contains 
the decision rules in the form (here as an example for the 
control of the front steering wheel): 

2 1: Wenn  is  and  is  then  is , 1,...,i L i i i i L i Lr e E Pe D e i Nω γΩ + =  
where Le , Le  and 2ω  are input variables; iE  and iΩ  are 
linguistic values of the input variables Le  and 2ω , 
respectively, used in the i -th rule. Output function 
implements a PD-controller with the parameters iP  and iD  
using trajectory following error Le  and its time change Le . 
Hence, the fuzzy controller is based on Takagi-Sugeno 
inference system. 

The crisp output value of the control signal is computed by 
the singleton method. For the steering angle 1γ  of the front 
wheel, the output is computed from local outputs of the N  
rules described above using the formula:  
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where iµ  is the weight of the i -th rule. Thus, the control 
signal is computed as a weighted average from several PD-
controllers and hence without discontinuities. The fuzzy 
rules for the steering angle of the rear wheel 2γ  and its 
angular speed 2ω  are implemented in an analogous 
manner. 

The fuzzy controller with inference systems described above 
can be easily implemented as a structured neural network. 
The main advantage of such implementation is the 
possibility to optimize its parameters (i.e. the values of 
proportional and derivative gain of the PD-controllers and 
the parameters of the input/output fuzzy sets) by some 
adaptation procedure. Moreover, the parameters can be 
adapted continuously during robot movement by means of 
on-line training methods and available input-output data. 

The structure of the closed control loop with the neuro-fuzzy 
controller for trajectory follwing is shown in Fig. 8. The 
proposed controller has two inputs - trajectory following 
error ( )Le k  and its one time-delayed sample ( 1)Le k −  to 
compute the time change of the distance from the trajectory. 
The trajectory following error ( )Le k  is either computed from 
the actual robot position ( )F kp  and predefined trajectory 
coordinates ( )L kd  or directly measured by a line camera, 
which is mounted underneath the robot. 

The outputs are steering angles 1( )kγ  and 2 ( )kγ  for both 
front and rear steering axes and the maximum forward 
speed of the rear wheel 2 ( )kω .  

The tuning of controller parameters uses backpropagation 
learning and takes place in two steps. 
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( )L kd

( )F kp

z-1 2( )k
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Trajectory
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Controller
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Fig. 8 Control-loop with fuzzy controller 
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Step I - Training of dynamical model of the system 

In the first phase, the dynamical model of the mobile robot 
following a predefined trajectory must be trained. This model 
is required for backpropagating of the trajectory error to the 
controller during an adaptation of its parameters. Because it 
is very difficult (if not impossible) to derive this model 
analytically in the form of differential equations and then 
backpropagate the control error through it, we used multi-
layer neural network instead. The inputs to this network are 
two steering angles 1( )kγ , 2 ( )kγ , angular velocity of the 
driving wheel 2 ( )kω  and the last distance of the robot from 
the trajectory ( 1)Le k −  plus one delayed sample of every 
input variable in order to build the model dynamic, i.e. 

1( 1)kγ − , 2 ( 1)kγ − , 2 ( 1)kω −  and ( 2)Le k − . Output of the 
network is the estimated distance from the trajectory ( )Le k . 
The structure of proposed neural network is given in Fig. 9. 
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Fig. 9 Neural network for modelling of the robot 

For learning of neural network based model of the robot, 
sufficient amount of training data (coordinates of the trajec-
tory, robot position error, robot forward speed, etc.) must be 
recorded. Three methods of training data acquisition can be 
used: 
• Manual steering of the mobile robot along the desi-

red path. In this data acquisition mode, the line camera 
is used to measure the distance from the trajectory. The 
trajectory is represented by a contrast line draw on the 
floor (e.g. black line on the white floor). The mobile robot 
is teleoperated from MATLAB in this mode.  

• Manual steering of the simulation model of the ro-
bot. In principle it is the same method of data acquisition 
as the previous one, but instead of the real robot, a robot 
simulation in a 3D environment running in MAT-
LAB/Simulink is used. The main advantage of this met-
hod is the possibility to control the mobile robot also with 
a greater distance to the trajectory, because the distance 
is not limited by the measuring range of the line camera. 
Moreover, the motion of the robot can be viewed by the 
simulation from various viewpoints, including "through 
the robot camera lens" perspective, and the simulation 
can be stopped if the robot goes away from the trajecto-
ry or moves in a wrong direction. 

• Autonomous ride of the robot controlled by a PD-
controller. As mentioned above, in certain circumstan-

ces it is possible to follow a trajectory by mobile robot u-
sing a simple PD-controller. The conditions for trajectory 
following are limited by forward speed of the robot and 
maximal distance from the trajectory. Therefore, the trai-
ning data sets can be recorded also during a real or si-
mulated ride of the robot controlled by the PD-controller 
as long as it moves along the trajectory.      

After collecting of a sufficient amount of training data, the 
neural network implementing robot model can be trained. 
For this purpose, hybrid learning [3] is very suitable because 
of its fast convergence and computational effort. This type of 
learning combines an adaptation of non-linear parameters of 
the system NΘ  by the Levenberg-Marquardt algorithm 
according to equation 

1
( )T T

N L Lλ
−

 ∆ = − + − Θ J J I J e e  (5) 

and the estimation of its linear parameters LΘ  using LSE-
method 

1( )T T
L L

−=Θ A A A e , (6) 

where J  is the Jacobian of the system, A  is a matrix of 
activation functions of neurons from the Layer 1 and Le , Le  
is a vector of output and estimated errors, respectively. 

Because the learning of this neural network is a computatio-
nal consumptive process, it is usually done off-line. Learning 
of the neural network is depicted in Fig. 10. 
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Fig. 10 Training of the feedforward neural network 

Step II - Training of the neuro-fuzzy controller 

In the second step, the parameters of the neuro-fuzzy con-
troller are adapted so that the mobile robot is able to follow 
the desired trajectory with specified tracking error and with 
arbitrary forward speed. For the purpose of learning, a neu-
ro-fuzzy controller is implemented using a structured neural 
network. In this network, each layer represents a part of the 
Takagi-Sugeno fuzzy inference system. 

The control loop with neuro-fuzzy controller during self-
learning is depicted in Fig. 11. 

The learning of the neuro-fuzzy controller can be realized 
again using simulations or by experiments with the real 
robot. However, the robot simulation is the preferred way, 
because it can accelerate the learning process. Moreover, 
the problems that can occur by experimentation with the real 
robot controlled by a not well-tuned neuro-fuzzy controller 
can be avoided. In that case, the robot always has to be 
stopped to prevent possible collisions. Afterwards the lear-
ning can be started again, but the training process is delay-
ed. Good results can be achieved by combining simulations 
and real experiments. In this case, the parameters of the 
controller are adapted using simulations first. Thereafter, 
they are fine-tuned using experiments with the real robot. 
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The adaptation algorithm is based like before on the Leven-
berg-Marquardt concept. As measure for parameter adapta-
tion, the sum of squared distances from the trajectory is 
used. Experiments have shown that it is not necessary to 
adjust the parameters of input fuzzy sets of the neuro-fuzzy 
controller, but only parameters of output functions, i.e. the 
gain values of the PD-controllers. 
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Fig. 11 Training of the neuro-fuzzy controller 

Experiment results 

In the following graphs, the results of two experiments are 
presented. During experiment 1, the robot tries to find a 
straight line and to follow it. During experiment 2, the robot 
follows a curved trajectory. Start positions of the robot in 
both experiments are in Fig. 12 and Fig. 13. 

In Fig. 14 and Fig. 15, trajectory distances from both expe-
riments before and after learning are compared. At the be-
ginning, a fuzzy controller with trial-and-error designed out-
put function is used. With this initial controller set-up, the 
robot has a serious problem to follow the desired trajectory 
and during experiment 2, it diverges from the trajectory. 

After 10 training steps, the trajectory following error was 
reduced rapidly and the robot was able to follow the trajecto-
ry without difficulites. After few more trainings epochs, the 
trajectory following error reached nearly the global optimum. 
It was not possible to reduce the line following precision 
further because of the kinematic and dynamic constraints of 
the robot.  

 

 
Fig. 12 Experiment 1 

 
Fig. 13 Experiment 2 
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Fig. 14 Experiment 1 – trajectory following error 
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Fig. 15 Experiment 2 – trajectory following error 

The improvement of the robot control during the learning of 
the neuro-fuzzy controller is obvious from Fig. 16 and Fig. 
17.  In these figures, the motion of the robot before and after 
adaptation of the controller parameters are depicted.  
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Fig. 16 Experiment 1 – robot motion 
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Fig. 17 Experiment 2 – robot motion 

Conclusion 

In this paper, the problems of motion control of non-
holonomic mobile robots have been analysed. Because of 
the absence of their inverse kinematic model, the classical 
model-based control methods are not applicable. As a solu-
tion we have developed an intelligent neuro-fuzzy controller 
for the trajectory following. The controller is able to adapt its 
parameters by self-learning, therefore the inverse kinematic 
or dynamic model of the robot are not required for its de-
sign. Moreover, the parameters can be adapted also on-line 
during robot movement or off-line in some regular intervals, 
respectively. After the learning phase, the mobile robot was 
capable to follow the desired trajectory with expected preci-
sion in any situation.  

The proposed controller has been tested on the experimen-
tal quasi-omnidirectional mobile robot F.A.A.K. The simula-
tion and experiment results have approved, that the desig-
ned neuro-fuzzy motion control concept is very suitable for 
the considered class of non-holonomic mobile robots beca-
use of its simple design and implementation. 
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