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Abstract

In this paper, a state of the art review of model predictive control (MPC) for smart buildings to provide demand side
flexibility with the purpose of enhancing a high penetration of renewables into the integrated energy systems is
carried, including MPC current development status, pros and cons, implementation feasibility and practice barriers.
A two-layer hierarchical MPC-based controller is proposed in a case study for a newly-built multi-family building in
Copenhagen. The simulation results show that buildings, as a flexible load to the multi-carrier energy system, whose
thermal mass is a heat buffer with a large storage potential, can contribute to the grid ancillary services (load shifting
or flexibility), based on the economic incentives that the energy/flexibility market offers to end-users.
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1. Introduction

To fulfill the Danish 2050 100% fossil-free energy target, we need to choose a smart energy system solution and
various short-term and longer-term storages across the different energy sectors. Traditionally, the different energy
subsystems 1i.e. electricity, gas, district heating/cooling and hydrogen had relatively few interactions and were
designed and operated independently of each other to handle a single energy carrier. However, today, there is
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significant interest in exploring the synergies between energy networks (e.g. power to gas energy storage and
thermal storage providing demand response). Interactions take place through the conversion of energy between
different energy carriers and its storage in order to provide services and ensure that each is operated in an optimal
way [1]. This integration requires more flexibility in the entire energy system while ensuring security of supply, and
it will challenge the existing energy (electricity, heating, transportation and gas) infrastructure and its control
systems with more complicated dynamics and uncertain problems [2].

Energy consumption in buildings represents over 30% of society’s energy demand and half of global electricity
demand [3]. As part of the transition to a sustainable and integrated future energy system, on one hand, it is of
extreme importance to improve buildings’ energy efficiency; on the other hand, as shown in Fig.1, thermal capacity
of the buildings can be used to become a flexible energy (both electricity and heating/cooling) consumer that can
actively take part in the future smart energy systems by providing the demand side flexibility/ancillary services via
the flexibility/electricity market (e.g. FLECH) for the transmission system operator (TSO), distribution system
operator (DSO), district heating operator (DHO) and balancing responsible party (BRP), etc. [5].

Model predictive control (MPC) is seen as one of the key future enablers for an intelligent energy management in
buildings to meet inhabitants’ comfort needs in a more efficient way [7]. This control technique consists in an on-
line predictive optimal control of the energy system according to the estimated future behavior of the system given a
number of disturbances (e.g. weather, dynamic energy price, occupancy...) [8][9]. The energy management decision
is supported by a variety of parameters: energy consumption, dynamic energy price, share of renewable energy
sources (RES) in generating mix, CO, intensity of the power, and the deviation from an indoor temperature
reference. Each of these parameter results in a different formulation of the control strategy. As highlighted in [10],
trade-offs arise as part of the selection of the strategy, for example, to minimize energy consumption, to provide
wind balancing service for BRP; or to reduce CO, emissions, etc.

The remainder of the paper is organized as follows: what is MPC-based building energy management systems
(BEMS) for demand response, its pros and cons are introduced in section 2. A case study of MPC-based BEMS for a
multi-family residential building in Copenhagen is conducted with a hierarchy controller design, followed by a
discussion of its implementation feasibility and practical barriers in section 3. The conclusion is drawn in section 4,
together with a description of future work. ‘
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2. Current status of MPC-based BEMS for demand response (DR)
2.1. What is MPC-based BEMS for DR?

Model Predictive Control (MPC) is a control algorithm that optimizes a sequence of manipulated variable
adjustments over a prediction horizon by utilizing a process model to optimize forecasts of process behavior based
on a linear or quadratic objective, which is subjected to equality or inequality constraints [10]. In MPC-based
BEMS, during each sampling interval, a finite horizon (e.g. every 15 minutes) optimal control problem is formulated
and solved over a finite future window (e.g. next 36 hours)[11]. The result is a trajectory of inputs and states into the




3028 Yi Zong et al. / Energy Procedia 158 (2019) 3026-3031

future, respecting the dynamics and constraints of the building while optimizing some given criteria. In terms of
building control, this means that at the current control step, a heating/cooling etc. control schedule is obtained for
the next several hours or days, based on a weather forecast. Predictions of any other disturbances, time-
dependencies of the control costs (e.g. dynamic electricity/heating prices), or of the constraints (e.g. thermal comfort
range) can be included in the optimization. The first step of the control schedule is applied to the building, setting all
the electricity, heating/cooling elements, etc., then the process moves one step forward and the procedure is repeated
at the next time instant. This receding horizon approach introduces feedback into the system, since the new optimal
control problem solved at the beginning of the next time interval; and it could be a function of the new state at that
point in time, and of any disturbances that have acted on the building [12]. This can effectively incorporate the
uncertainties incurred by model mismatch, time-varying behavior and disturbances [9].

Recently, MPC has drawn the attention of the energy system community, because it is based on future behavior
of the system and predictions, which is appealing for systems significantly dependent on forecasting of energy
demand and RES generation [13]; moreover, it provides a feedback mechanism, which makes the system more
robust against uncertainty [8]. The MPC strategies, that employ an economic-related objective function for real-time
control, have lately proved a numerically efficient approach to managing the portfolio of energy usage with provable
stability properties. It is designated as an economic MPC (EMPC), which always copes with dynamically changing
energy prices. Unlike the traditional MPC, EMPC optimizes the process operations in a time-varying manner, rather
than maintain the process variables around a few desired steady states or tracking the reference. The process may
thus totally operate in the transient state with EMPC [14] [15][16].

In addition, for multi-zone buildings, a centralized MPC topology is often difficult to implement, because
computational demands required solving the centralized problem grows exponentially with the number of
zones/subsystems. Another drawback of the centralized strategies is their poor flexibility and reliability, comparing
to a decentralized or distributed control structure [12]. Reference [17] and [18] addressed heating and aggregator-
oriented energy management with a decentralized and distributed MPC. The performance of the decentralized one
strongly depends on the level of interactions between subsystems; while the distributed one, as each controller
knows about control actions of its neighbors, keeps the same performance as the centralized one. Meanwhile, many
studies have proven that the building sector can significantly benefit from replacing the current practice rule-based
controllers (RBC) by more advanced control strategies [19]. However, the optimization-based control algorithms,
such as MPC, impose increasing hardware and software requirements, together with more complicated error
handling capabilities required from the commissioning staff. In recent years, several studies introduced promising
remedy for these problems by using machine learning algorithms [20][21].

According to smart grids/ integrated energy systems concept, DR requests a block of smart buildings/community
to actively participate in the grid operation by providing flexibility, assuming the form of price-volume signals
specifying a maximum volume of energy to be consumed during a given time slot and a monetary reward assigned
to the participants in case they fulfills the conditions. Except for smart start of the appliances in buildings with MPC
strategies for DR program, the heating/cooling generation with electrification on the demand side in buildings
provides the opportunity of power to heat solutions [22][23].

2.2. Pros and Cons of MPC

The evaluation results of the finished EU and national demonstration projects [24][25][26] show that MPC-based
BEMS controller is an efficient feasible approach to manage the portfolio of energy usage, and its pros and cons are
listed in Table 1. Implementation of MPC-based BEMS requires the interdisciplinary knowledge of computer
science (e.g. big data analysis, cloud computing, etc.), building science, modeling and control theory. MPC relies on
a model to determine optimal control actions, creating the need for control engineers to develop a building energy
model. They are generally unable to use the model created during the design process because the model is too
complicated to be used in a control environment (large building models may take up to several hours to run for
optimization). Therefore building energy model reduction and parameter estimation are required [27]. As state in
[28], the process of model identification (including data sampling and pre-processing) accounts for 70% of the effort
for implementing an MPC controller. The most acceptable system identification for MPC application is the data-
driven grey-box modeling approach [8][11][21].
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Table 1 Pros and Cons of MPC

Pros Cons
can take into account stochastic properties of random
disturbance variables (e.g. weather forecast, occupancy
profiles); thus it adjusts control actions appropriately;
can deal with variable energy price that can be easily
included into the formulation of the optimization problem;

o Challenges for non-technical users, and they require
specific background knowledge of the methods.

MPC

e Time consuming for data analysis and modelling

can realize the load shifting within certain time frame for

dispatch and operation; e MPC strategies require significantly higher investments

; — which may not be compensated by additional savings in
can be formulated in a distributed manner and thus the a short time.

computational load can be split among several solvers.

3. Case study of MPC-based BEMS for a newly-built multi-family residential building in Copenhagen

In this section, a case of a newly built multi-family building in Copenhagen is investigated. All the installed
sensors, control actuators and communication systems (KNX protocol-based) in this building are ABB’s home
automation products, which will be used to demonstrate the future smart energy solutions. The space heating in this
building is a radiant floor heating system (RFHS). The hot water for the RFHS is provided by a potential low
temperature district heating (DH) system connected with combined heat and power and waste incineration plants.

3.1. Control hierarchy design

A two-layer hierarchical MPC-based controller (see Fig. 2) is proposed for the BEMS with single loops of PID/PI
controllers (thermostat in each zone) at the lowest level and a model based predictive controller at the top level. We
designate an MPC-based BEMS such that both energy and associated costs are minimized. The objective function,
system states, system operation and comfort constraints are formulated as shown in (1). The dynamical models of
the subsystems were derived for simulation based studies and reduced order models were built for the purpose of
controller design. The building thermal mass was modelled and verified by using real experimental and operational
data.

minUk={Tset,k+f|k—1};\]=0 Zjs Blessieiesies (P i)

s.t. Rivjrrk-1 = AXpqjie—1 + Bullpyjjx—1 + Bg&k+j|k—1 j=01-,N—-1
Zkrjik-1 = Cxiy jlk—1 + Dyllier jie—1 + Dadier k-1 j=12,-,N
Moninge+jlk-1 < Mt jlk—1 < Mmax k+jk—-1 j=12,-,N
Pminperjie—1 < Tijerji—1 < Fmax i+ jle-1 j=01--N
tr = Tsp,k+j|k—1 Sty (1)

3.2. Results and discussion

A two-week simulation results are shown in the Fig. 3, which are based on the operational data from January
2017 to April 2017, and the formulated optimization problem in aforementioned EMPC algorithm (1) with soft
constraints is solved by the IBM CPLEX. It is observed that the flow rate reaches negative values sporadically and
less frequently than in the case of hard constraints. This happens whenever the PID controller counteracts
disturbances driving the controlled variable away from the set point. What is expected from these simulations is that
the control signal (inside air temperature set points) will show correlation with the heat price. Whenever the price is
relatively low the controller should take action by requesting a rise in the room temperature to drive it to the upper
limit, so that in periods where the energy price is high, the controller does not have to buy energy, but relies on the
accumulated energy in the apartment’s thermal mass instead. Through an analysis of the operational data, it was
found that the floor heating system in many rooms was deactivated because of a central ventilation system in the
building. The central ventilation system in many cases overruled the RFHS to meet the needed thermal comfort level
and even surpassed it, leading to temperature overshoot. It is suspected that the nature of the data from the apartment
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could only allow for deriving a heat load model of the apartment, and not a model for predicting indoor temperature
variations, because the temperature varies around its set point. Due to the owner’s thermal comfort preferences the
set points are not allowed to vary considerably for an accurate predictive model in practice.

MPC simulation
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Fig.3. 14-day’s MPC heating consumption simulation for a zone in a building with soft constraints

4. Conclusion

In summary, flexible consumption and smart energy systems must be developed with correlative dependence and
interplay to meet the challenge of integrated fluctuating RESs. Buildings with large thermal storage capacity play a
crucial role in this process. The experimental and simulation study demonstrated that EMPC implementation for
BEMS is effective and attractive; but there are still some challenges and barriers, such as control-oriented models,
hardware and communication and end user acceptance, which need to be effectively handled in practice. The
experimental studies (e.g. step response, pseudo-random binary sequence, etc.) are extremely necessary to identify
the system and well reflect the feasibility of the proposed idea and confirm the principle idea of the optimal
operating the temperature set point in each apartment/zone. The proposed hierarchical controller setup compared to
a central controller is more reliable due to the fact that local controller loops will handle disturbances locally. The
fault propagation through the entire system is less probable compared to a centralized scheme. However it is still
less robust compared to a distributed controller structure. Evaluations of the degree of optimality and robustness of
the system to model mismatches or measurement errors are not investigated and are subjects of our future work.
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