Analýza asynchronního chodu generátorů (1)

Karel Máslo, Ladislav Haňka

Příspěvek se zabývá příčinami a následky ztráty synchronismu synchronního generátoru. Na teoretických i praktických případech ukazuje časové průběhy fyzikálních veličin a činnost vybraných typů ochran. Pro výpočet časových průběhů a analýzu činnosti ochran je použit síťový simulátorem MODES.

Úvod

Ztráta stability synchronního stroje a přechod do asynchronního chodu je nepříznivý provozní stav, kterému je třeba předcházet a který je třeba rychle odstranit když už k němu dojde. Příčinou těchto dějů je neschopnost stroje přenést elektrický výkon P_E (odpovídající mechanickému výkonu dodávaného poháněcím strojem) do sítě. To může být způsobeno:

- ztrátou buzení synchronního stroje, kdy výrazně poklesne vnitřní elektromotorické napětí,
- oslabením přenosové sítě (např. výpadkem vedení) kdy výrazně vzroste reaktance X mezi zdroji,
- zvyšováním přenášených výkonů, kdy dojde k výraznému překročení úhlu δ přes mez 90°.

Principiálně lze výše uvedené mechanismy vysvětlit na závislosti výkonu přenášeného ze zdroje elektromotorického napětí E do sítě s napětím U_S přes sumární reaktanci X.

$$P_E = \frac{EU_S}{X} \sin \delta \tag{1}$$

Závislost P_E na zátěžném úhlu δ je na obr. 1.

Ztráta buzení představuje pokles elektromotorického napětí E a stejně jako pokles U_S a nárůst reaktance X snižuje amplitudu pře-

Obr.1 Závislost přenášeného činného výkonu P_E na zátěžném úhlu δ

nášeného výkonu P_E . Zvětšování přenášeného výkonu při nezměněných parametrech sítě a napěťových poměrech zvětšuje zátěžný úhel δ . Pokud překročí δ hodnotu $\pi/2$ dostaneme se do nestabilní oblasti a stroj přejde do asynchronního chodu – ztráty statické stability tzv. sklouzáváním.

Příspěvek nejprve ukazuje jednotlivé případy na síťovém simulátoru MODES (o programu MODES viz např. [1] – [19] nebo www.modesinfo.com). Modelové výpočty ukazují i činnost vybraných typů ochran, které chrání zařízení sítě i generátory před nepříznivými vlivy asynchronního chodu. Nakonec je uveden přehled ochran proti ztrátě stability a asynchronnímu chodu, které se používají na straně synchronního generátoru případně ve vybraných místech sítě.

1. Ztráta buzení generátoru

Vliv ztráty buzení si ukážeme na příkladu skokového poklesu budícího napětí generátoru na 60% jmenovité hodnoty jak je vidět z obr. 2. Skokovou změnou budícího napětí Ub dochází k poklesu svorkového napětí Ug, které se odrazí i v napětí sítě Us. Po 9s dochází k přechodu do asynchronního chodu a prokluzu pólů, což se projeví typickým pilovitým průběhem všech provozních veličin. Budící vinutí nestačí dodávat jalový výkon na magnetizaci stroje a ten se odebírá ze sítě, což se projevuje razantním poklesem dodávky jalového výkonu Qg, jak je vidět z obr. 3.

Odběr magnetizačního proudu ze sítě způsobuje nárůst proudu generátoru Ig nad jmenovitou hodnotu a vede k přetěžování statorového vinutí. Činný výkon generátoru klesá, protože klesá amplituda sinusovky podle (1) vlivem poklesu napětí a elektromotorické síly. Rázy činného výkonu po ztrátě stability namáhají základy soustrojí a negativně ovlivňují životnost stroje. Jelikož turbína dodává stejný výkon dochází k nárůstu otáček, které jsou v obr. 4 zobrazeny pomocí tzv. skluzu sg (procentního rozdílu skutečných a jmenovitých otáček). S nárůstem otáček je spojen i nárůst absolutního zátěžného úhlu δ měřeného mezi synchronně se otáčející referenční osou a osou q rotoru generátoru. Vnitřní zátěžný úhel

přechodu do asvnchronního chodu

 υ měřený mezi osou q a fázorem svorkového napětí se po přechodu do asynchronního chodu mění v mezích $\pm \pi$.

Některé bloky jsou vybaveny automatikami, které při vybočení otáček ze zadaných mezí přepínají regulaci turbíny do režimu regulace otáček. Samotná otáčková regulace nestačí k razantnímu snížení výkonu turbíny. Proto jsou moderní turbíny vybaveny akceleračním relé, které při nárůstu zrychlení nad zadanou mez, dává povel k rychlému zavírání ventilů turbíny. Rychlé snížení výkonu turbíny umožní resynchronizaci stroje a provoz při sníženém výkonu jak ukazuje obr. 5. Z průběhu je vidět, že k resynchronizaci došlo po čtyřech prokluzech stroje, což ovšem výrobce obvykle nedovoluje. V dosavadních simulacích nebyly dosud uvažovány ochrany. Ukážeme si, jak by v našem případě působily dvě ochrany proti ztrátě synchronismu a buzení, které vyhodnocují impedanci. Podrobnější popis nastavení ochran je v kapitole 4.

Na obr. 6 je vidět trajektorie impedance viděné ochranou na svorkách generátoru za blokovým transformátorem, která protíná charakteristiku ochrany proti ztrátě buzení a vstupuje do ní. Následně naběhne ochrana na ztrátu buzení a pokud impedance setrvá ve její vypínací charakteristice, vydá s mírným zpožděním (cca 1 - 2 s) povel v vypnutí. Podle simulovaného průběhu by náběh ochrany nastal cca po čase 5.2 s po skokové změně budícího napětí. Ochrana proti ztrátě synchronismu by nepůsobila, protože je nastavena na nabuzený generátor a má hlídat v zásadě prokluz plně nabuzeného generátoru.

Obr.5 Průběhy skluzu sg při přechodu do asynchronního chodu a resynchronizaci snížením výkonu

Obr.6 Charakteristiky ochran a trajektorie v impedanční rovině při přechodu do asynchronního chodu

Obě ochrany jsou nastaveny podle [20]. Ochrana proti ztrátě buzení je modelována kružnicí posunutou o hodnotu součtu synchronní a poloviny přechodné reaktance (Xd + X'd/2) v záporném směru osy X a poloměru Xd. Ochrana proti ztrátě synchronismu je modelována kružnicí o poloměru rovném součtu reaktance blokového trafa a poloviny přechodné reaktance (Xt + X'd/2).

Literatura

[1] K. MÁSLO, J. FEIST, Power system dynamics behavior, modeling and simulation of the primary control test, the 2nd Int. Workshop on El. Power System Control Centers, Alghero, Italy., 1993

[2] "Long Term Dynamics Phase II", CIGRE TF 38-02-08 Final Report, Jan. 1995

[3] K. MÁSLO, S. VNOUCEK, J. FANTÍK, Unit black start and power system restoration, International Symposium MEPS'96, Wroclaw, Poland, 1996

[4] K. MÁSLO, J. FANTÍK: Dynamic analysis of the power system; the 2nd Int. Conf. ECPS'96, . , str..230-234, Bratislava, Slovensko

[5] K. MÁSLO, J. FANTÍK, Electromechanical and electromagnetic phenomena during power system restoration, the IXth Int. Scientific Conf. EE '98, str.185-188, St.Lesná, Slovensko, 1996.

[6] K. MÁSLO, I. PETRUZELA, J. PIROUTEK, Nuclear power plant in island operation, UPEC 1997, Manchester, England

[7] K. MÁSLO, J. ANDEL: Dynamic simulation of Nuclear Power Plant Auxiliaries, APSCOM '97, Hongkong, China

[8] K. MÁSLO: The general-purpose network simulator MODES, the 4th Int. Workshop on El. Power System Control Centers, Rethymno, Greece, 1997

[9] K. MÁSLO, P. NEUMAN: Power System and Power Plant Dynamic Simulation, the 15th IFAC World Congress, Beijing, China, 1999

[10] K. MÁSLO, S. VNOUCEK: Short Circuit Calculation Analysis, the IEEE PowerTech'2001, Porto, Portugal, 2001

[11] K. MÁSLO, S. VNOUCEK: Gas turbine model using in design of heat and power stations the IEEE PowerTech'2001, Porto, Portugal, 2001

[12] P. ŠVEJNAR, K. MÁSLO, S. VNOUČEK: Dynamická odezva ES na deficit činného výkonu; ENERGETIKA č.6/94

[13] P. ŠVEJNAR, K. MÁSLO, S. VNOUČEK: Spuštění bloku ze stavu bez napětí a obnova napětí v ES; ENERGETIKA č.2/97

[14] K. MÁSLO: Model dieselgenerátoru pro dynamické výpočty, časopis EE č.2/1999

[15] K. MÁSLO: Dynamika elektrizační soustavy, sborník 2.semináře E2000 -Sledování a řízení bezpečnosti provozu, Praha únor 2000

[16] K. MÁSLO: Dynamika distribučních soustav, setkání Dynamické modelování distribučních soustav, Praha červen 2000

[17] K. MÁSLO: Dynamické modely pro vyšetřování přechodných dějů v ES: seminář Aktuální otázky a vybrané problémy řízení ES, Poděbrady listopad 2001

[18] J. ANDĚL, K. MÁSLO: Využití modelu plynové turbíny při návrhu elektráren a tepláren, 1.mezinárodní vědecké sympozium ELEKTROENERGETIKA 2001, Stará Lesná

[19] K. MÁSLO: Model asynchronního motoru pro dynamické výpočty,AT&P Journal, č. 2 a 3./2002

[20] Long-TermDynamics Simulation, Modeling Requirements, EPRI Final Report, 1989

Karel Máslo Ladislav Haňka

ČEPS, a. s. e-mail: maslo@ceps.cz

