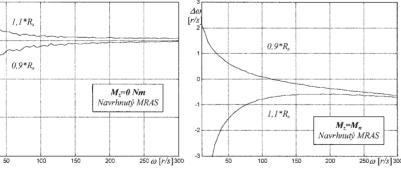
Pozorovatele stavových veličín bezsnímačových servopohonov s asynchrónnym motorom (3)

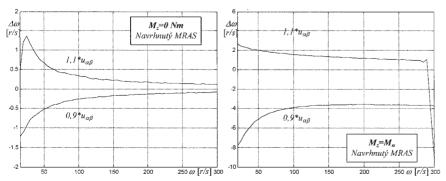
3.1 Citlivosť na zmeny parametrov

Vplyv zmeny vybraných parametrov motora na presnosť bezsnímačového rýchlostného servopohonu s navrhovaným pozorovateľom uhlovej rýchlosti MRAS (obr. 8) bola skúmaná simulačnými experimentmi, a to pre prípad bez zaťaženia motora a pri zaťažení motora nominálnym momentom. Vplyv zmien parametrov R_s na presnosť pozorovania rýchlosti je zobrazený na obr. 13. Vplyv nepresnej hodnoty amplitúdy statorového napätia na presnosť pozorovania rýchlosti je zachytený na obr. 14.

Z výsledkov vyplýva, že R_s najviac ovplyvňuje presnosť pri nízkych rýchlostiach, a najmä pri zaťažení. Iná je situácia, keď je pásmo priepustnosti RR nastavené na 30 Hz. Vtedy pri zmenšení odporu statora rotora na $0.9*R_s$ dochádza k nestabilite. Pri zväčšení odporu na $1.1*R_s$ dochádza k zväčšeniu statickej chyby. Pri parametrizovaní regulátorov a pozorovateľov servopohonu je výhodné nastaviť hodnotu R_s identifikovanú za studena.


Zmena odporu R_r prakticky ovplyvňuje presnosť len pri zaťažení. Zmena L_m sa prejavuje pri experimente bez zaťaženia najviac pri nízkych rýchlostiach. Pri zaťažení

sa v prípade pozorovateľov MRAS statická chyba mení v závislosti od rýchlosti. V prípade priameho pozorovateľa chyba nezávisí od rýchlosti. Zmena σL_s bez zaťaženia má na statickú chybu minimálny vplyv. V prípade zaťaženia majú väčšiu chybu pozorovatele MRAS. Navrhovaný MRAS dosahuje o niečo lepšie výsledky ako MRAS-CLFO.


Vplyv chyby amplitúdy statorového napätia na presnosť je najväčší v oblasti nízkych rýchlostí. Pri zaťažení je chyba niekoľkonásobne vyššia. Pri experimentoch na reálnom zariadení (obr. 9 – 10) je statická chyba pri zaťažení zapríčinená najmä tým, že skutočné napätie na svorkách motora nedosahuje amplitúdu želaného napätia. Zlepšenie presnosti v oblasti nižších rýchlostí a pri zaťažení je možné dosiahnuť využitím rekonštrukcie statorového napätia na základe znalosti spínacích stavov TMF, použitím kompenzácie mŕtvych časov, prípadne uvažovaním nelineárneho modelu TMF.

Záver

Pre aplikácie náročné na dynamické riadenie momentu je vhodný pozorovateľ MRAS-CLFO, kde je vyriešený problém

Obr. 13 Porovnanie citlivosti pozorovateľov na zmenu R_s

Obr.14 Porovnanie citlivosti pozorovateľov na zmenu statorového napätia

hranice stability a kompenzácie ofsetov. Vyžaduje parametrizovanie piatich parametrov korekčných členov. Servopohon s navrhnutým pozorovateľom MRAS (obr. 8) dosahuje v porovnaní s MRAS-CLFO lepšie výsledky v oblasti citlivosti na zmeny parametrov a pri pôsobení aktívnej záťaže. Porovnateľné vlastnosti dosahuje z hľadiska dynamických a statických vlastností, kvality chodu servopohonu v režime riadenia momentu.

Literatúra

[1] ABELOVSKÝ, M.: Pozorovatele stavových veličín bezsnímačových servopohonov s AM. [Dizertačná práca]. STU FEI KAR 2003, s. 117.

[2] ŽALMAN, M., JOVANKOVIČ, J.: Syntéza regulátorov vektorovo riadeného asynchrónneho motora metódou inverznej dynamiky. AT&P Journal, 5 (1998), č. 2, s. 70 – 73.

[3] HOLTZ, J., QUAN, J.: Sensorless Vector Control of Induction Motors at Very Low Speed Speed Using a Nonlinear Inverter. Model and Parameter Identification. In: IEEE Trans. on Ind. Appl., Jul./Aug., 2002, vol. 38, no. 4, pp. 1087 – 1094.

[4] JANSEN, P. L., LORENZ, R. D.: Accuracy Limitations of Velocity and Flux Estimation Indirect Field Oriented Induction Machines. In: EPE Conf. Brighton England, Sept., 1993, pp. 312 – 318.

[5] BLASCO-GIMENEZ, R., ASHER, G. M., SUMMER, M., BRADLEY, K. J.: Dynamic Performance Limitations for MRAS Based Sensorless Induction Motor Drives. Part 1: Stability Analysis for the Closed Loop Drive. In: IEEE Proc. Electr. Power Appl., Mar 1996, vol. 143, no. 2, pp. 113 – 122.

47

Ing. Michal Abelovský prof. Ing. Milan Žalman, PhD.

Katedra automatizácie a regulácie FEI STU Ilkovičova 3, 812 19 Bratislava e-mail: michal.abelovsky@elf.stuba.sk zalman@elf.stuba.sk