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Abstract 
The article refers to the previous part that is concerned in the classic methods for 
pattern recognition tasks in smart sensor systems. This part deals with application  
of the artificial intelligence means to this problem. The example given in the first part 
is solved using several selected types of artificial neural networks and fuzzy system. 
The purpose of the article is not to aim to explain the principles of these means to 
the readers, who have never met with them before. Only several properties related 
with the solving problem are mentioned. Presented solutions are summarized  
in term of several key factors crucial for realization in smart sensor systems. 

Keywords: sensor signal processing, sensor system, artificial neural network,  
fuzzy system, pattern recognition 

 
Introduction 

Nowadays, the usage of smart sensor systems in many 
areas, mainly in automation technology, becomes as a mat-
ter of course, even as a necessary requirement. Their quali-
tative properties are up to standard for demanding applica-
tions. However, the abilities that could be supported by 
smart sensor systems are still not exhausted. They are 
limited only by the current state of digital technology. 

Intelligence is a phenomena, which is associated usually 
with the human brain. In engineering, an intelligent device 
can be built up from artificial intelligence means, which are 
based upon a study of the living nature. The power of these 
means results from their universal properties. A required 
behavior can be achieved by learning them in a learning 
process even to learn them how to learn by yourself. From a 
technical and realization point of view they consist of simple 
small functional units (i.e. neurons), which do not require 
relative high computational power of the smart unit. It alrea-
dy appears a large variety of smart devices like neurochips, 
neurocomputers or fuzzychips \cite{Bouras, Suyama}, which 
are hardware accelerating the algorithms of artificial intelli-
gence. 

In many technical spheres the tendency is to improve quali-
tative properties of produced devices by implementing artifi-
cial intelligence means into them. But the reason could be 
else than to build up an intelligent device able to make deci-
sions. Sensor technology is one of those areas in which 
these means are something new. Their usage in smart sen-
sor systems could improve for example sensor signal pro-
cessing. The idea of this article is to show such applications 
to pattern recognition tasks. The authors in describe their 
idea that sensor systems will even control production pro-
cesses as agent systems do. Conceptions, mentioned abo-
ve, require effective processing and evaluating of a large 
amount of information. For this purpose, artificial intelligence 
means are about to be used \cite{Allgood}. 

The article follows from the previous part \cite{Miseje} and 
presents solution of the given example using several types 
of artificial intelligence means. 

1. Artificial Intelligence Means 

It exists a lot of references concerned in the principles and 
application examples of artificial intelligence means. The 
well known, most used and most propagated artificial intelli-
gence means are artificial neural networks, fuzzy systems 
and databases. Thanks to universal properties of these 
means their potential is very high. Usually, they are used for 
pattern recognition (as a universal classificator) or for beha-
vior modeling (as a universal approximator). Both tasks are 
solved in sensor technology too. 

In last few years, it have become very popular especially 
neuro-fuzzy systems, well known as ANFIS (Adaptive Ne-
twork-based Fuzzy Inference System). ANFIS is actually a 
fuzzy system, which is transformed to a neural network, 
when determining its parameters [6]. Then, any training 
method can be used to train the network. That means a 
fuzzy system is able to learn a required behavior and beha-
ve like a neaural network, even better. 

Selection of neuro- or fuzzy-chips has been significantly 
increased in the last years. Their important properties like 
performance standard and especially miniaturization are 
essential for implementation into smart sensor systems. 
Figures Fig.1a and Fig.1b show two possible connections of 
a neuro-fuzzy processor in the structure of a smart sensor 
system. In the block diagram according to Fig.1a the neuro-
fuzzy processor NFMP works as a coprocessor. The main 
microprocessor MMP forwards data to NFMP and NFMP 
returns processed data back to MMP.  

According to Fig.1b, NFMP is connected directly into mea-
suring channel. In such a connection NFMP could realize 
several primary information processing tasks: data reduc-
tion, filtration, linearization, dynamic error correction, distur-
bance correction and diagnostics. Then, the MMP would 
only realize communication with its environment or auto-
calibrating functions. The sensors S1 to SK makes the sen-
sor array, TADC is an analog-digital converter together with 
a multiplexer and I is the communication interface of the 
smart sensor system. 
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Fig.1 Neuro-fuzzy processor built into the smart  
sensor system: a) coprocessor, b) preprocessor 

2. Example on Identification 

In the next sections, there will be presented solutions for 
example given in the first part [1] using several selected 
types of artificial intelligence means. In short, let sensor 
array consist of 3 sensors, which are dedicated to identify 
(recognize) 1 of 4 scene statuses. The evaluation will be 
based on the pattern recognition (PARC) principle. 

Solving identification problems of PARC is available using 
several types of classificators. In the previous part [1] the 
correlation method as a representative of the classic met-
hods was presented. The reference and the actual patterns 
were preprocessed in the same way.  

Next, an application example for an actual pattern with the 
elements measured with precision of 2% was evaluated. 
Though the absolute value of sensor signals contains some 
kind of information, it was supressed at evaluation of corre-
lation coefficient. 

Except of bias removal, there exist normalization (1) to eli-
minate the vector length 

A
AA =ˆ  (1) 

The vector's space orientation, which contains the needed 
information, remains without change and the normalized 
vector is a vector with length of one. Vector normalization is 
a native procedure needed by some neural networks like 
self-organised maps or networks with radial basis functions, 
which are discussed later in the article.  

The normalized reference patterns (Tab.1, Fig.2) were crea-
ted from the beginning of ranges (0%) of physical quantities. 
It is obvious that they might be different from those created 
from the end of the ranges (100%). Therefore, when dealing 
with pattern recognition of signals, which values are chan-
ging in some interval, normalization is not a good choice for 
length elimination. Furthermore, the computational demand 
on vector normalizing is greater than on bias removal. An 
actual pattern, of course, should be also preprocessed the 
same way as the reference patterns. 

Tab.1 The normalized reference patterns 
 S1 S2 S3 
R1 (B1) 0.1839 0.9810 0.0613 
R2 (B2) 0.8148 0.3621 0.4527 
R3 (B3) 0.0000 0.6549 0.7557 
R4 (B4) 0.8144 0.3563 0.4581 

 
Fig.2 Graphical reprezentation  

of normalized reference patterns 

The similarity of two patterns X and Y can be evaluated by 
known Euclidean formula that gives the distance d between 
these patterns 
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Euclidean distances between the normalized reference 
patterns are in table 2. 

Tab.2 Euclidean distances between normalized patterns 
 R1 R2 R3 R4 
R1 0 0,9665 0,7889 0,9722 
R2 0,9665 0 0,9173 0,0080 
R3 0,7889 0,9173 0 0,9170 
R4 0,9722 0,0080 0,9170 0 

From table Tab.2 it results that identification of statuses B2 
and B4 can be problematic because patterns R2 and R4 are 
almost identical. Euclidean distance between them is relati-
vely small. To avoid incorrect results, considerably more 
precise sensors would have to be used. The absolute error 
∆A of each sensor is determined from minimal Euclidean 
distance $d_{min}$ between reference patterns according to 

N
d

A
min

2
1

=∆  (3) 

where N is number of sensors. It holds only for non-
normalized vectors. 

In the following sections, there will be described solutions of 
the example using MLP, RBF and SOM neural networks 
and using neuro-fuzzy system. As there exist patterns of 
which normalized vectors are allmost identical, it will be 
searching for such approaches, which do not need normali-
zation even any other preprocessing of measured signals 
from the sensor array. At the beginning of each section, 
there will be in short described the basic principles of the 
selected means. For deeper study of their properties and 
possibilities it is available [5]. 
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2.1 Solution using MLP neural network 

Neural networks have been studied for several decades 
since Rosenblatt first time applied single-layer perceptron to 
learning the pattern recognition in 1950. Perceptron repre-
sents one of the first attempts to build intelligent and self-
learning systems using simple components. Unfortunately, 
single-layer perceptron was not successfully applied to 
modeling of some logical functions. Well known is the XOR 
problem that has decreased the enthusiasm about percep-
trons for some time. Individual subjects have to be linearly 
separable. Otherwise, there is need to expand the number 
of perceptron's inputs (multiplication or power of the exis-
ting), or expand the number of perceptron's layers. A larger 
scale of use have reached MLP (Multi-Layer Perceptron) 
neural network. One can say, this is the most known and 
most used neural network. 

For the identification task will be applied three-layer percep-
tron neural network with input, hidden and output layer. 
Every neuron (\figurename~\ref{fig:mlpnn}) in the layers 
realizes the function 

⎟
⎠

⎞
⎜
⎝

⎛
+⋅= ∑

i
ii xwy θψ  (4) 

where ψ(·) is activation function of neuron, wi are connection 
weights, xi are inputs, θ is threshold. The network is feed-
forward with supervisor training. There exist several adapta-
tion methods to network training (determining network pa-
rametrs) [5], for example, gradient descent method. First, it 
is starting with a set of random connection weight. Then, an 
input vector x from training data set is selected. Finally, if 
perceptron gives an incorrect response y, all connection 
weights wi are modified according to 

iii xyw η=∆  (5) 

where η is learning rate coefficient, yi is target output and xi 
is input vector's element. 

 
Fig.3 Structure of perceptron 

From equation (4) results that evaluation of the neuron acti-
vation function ψ(·) could be difficult computing operation. 
For identification purposes two states: "IS", "IS NOT" are 
sufficient. Thus, the unit step activation function is approp-
riate, for which it holds 

( )
⎩
⎨
⎧ >

=
inak

0ak
0
1 x

xψ  (6) 

This is already a simple operation, except which, only the 
average sum needs to be evaluated in the algorithm. So, all 
together are very simple without large computational de-
mands on realization. The algorithm of the network can be 
emulated in a classic monolithic microcomputer. 

The solution of the given example is practically not compli-
cated. Out of example, some parameters of neural network 

like number of neurons in the hidden layer and number of 
inputs in each of these neurons can be determined. Concre-
te, the number of neurons is 4 and thus is equal to the num-
ber of identifiable states. The number of inputs to the neu-
rons is 3 and is equal to the number of sensors in the 
sensor array. The measured data from the sensor array do 
not need be preprocessed before passed to neural network. 
This makes it simpler to implement algorithm of classificator. 
Each neuron will signalize the identified status by 1 and by 0 
the others. The output from the hidden layer is a vector with 
4 elements. The index of the element with value 1 means 
identified status. Another layers are: input layer - distribution 
of input signals to the hidden layer, output layer - evaluation 
of signals out of neurons in the hidden layer. For example, 
only one neuron in the output layer with proportional activa-
tion function and connection weights with values 1,2,3 and 4 
respectively generates directly the index of an identified 
status. 

The training data set should contain data from whole output 
range of sensors in order to cover every situation. Because 
all transfer characteristics are monotonic, it will be enough 
to regard only start and end point of ranges (input at 0 a 
100% ±tolerance). It means that the training data set will 
contain 8 input and 8 output vectors. For example, the sta-
tus B1 gives the pair of input and output vectors as follows: 

X[%] input output 
0 (1,5 8,0 0,5)T (1 0 0 0)T 
100 (3,0 9,5 2,0)T (1 0 0 0)T 

If signals passed to the input of the network are within the 
range listed above, then the first element of the output vec-
tor (output of the first neuron) will be set to 1 that indicates 
status B1. 

Such a solution is simple, however it needs that all classes 
are linearly separable already by single-layer perceptron (in 
the hidden layer). The more complicated problems are able 
to be solved with more layers and training of network can be 
accomplished using the familiar backpropagation method. 

2.2 Solution using RBF neural network 

The structure of RBF(Radial Basis Function) neural network 
that will be used for PARC is depicted in figure Fig.4. The 
network has K inputs xk representing the elements of a 
signal vector. The number of neurons N is equal to the 
number of reference patterns. Each of the neurons stores 
one reference pattern in its centre cn. Neurons perform 
radial basis function R(·) according to equation (7) over 
neuron's input values and parameters. Outputs from neu-
rons are rounded by rounding function and multiplied by 
weight coefficients wn. Finaly all the values are added toget-
her in the summator Σ. The rounding functions can be rep-
laced by perceptrons (see figure Fig.3) with hard limit trans-
fer functions, thresholds set to 0.5 and input weight 
coefficients equal to the 1. 

Radial basis function R(·) is defined as follows 

( ) ( )2exp xc −⋅−= γxR  (7) 

and the overall network's function is 

( )[ ]∑
=

−⋅−⋅=
N

i
iwy

1

2exp xciγ  (8) 

where wi are weight coefficients, ci are centers of neurons, x 
is input vector and γ is spread or kernel. 

Solving the following linear equation system usually does 
the learning of RBF neural network. 
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Elements in the diagonal of the matrix of radial basis fun-
ctions are 1's. The size of the matrix is equal to the number 
of the reference patterns. Solution of this linear equation 
system gives the vector of the weight coefficients w. Spread 
γ and output vector y, passed to the linear system, are to be 
chosen. Disadvantage of this learning method is that all 
parameters need to be recomputed by (9), when a new 
reference pattern will have been added. 

 
Fig.4 Structure of RBF neural network 

The important role plays center selection. If a center were a 
vector with the elements equal to the middle of the output 
ranges of the particular transfer characteristics, Euclidean 
distance between the centre and both end points of these 
characteristics would be equal. In figure Fig.5, there are 
graphed Euclidean distances between the reference pattern 
for status B2 and the patterns for all states in their whole 
definition scope. This way, the distances of the other refe-
rence patterns can be examined. One can find out that an 
appropriate spread γ makes it possible to separate the pat-
terns each other in the whole range. 

 
Fig.5 Euclidean distances from the reference pattern R2 

The learning process by (9) can be skipped only by choo-
sing w and spread γ. Coeficients of w correspond with the 
outputs y. The greater is γ, the sharper are radial basis 
functions around center ci and network will be more sensiti-
ve to noisy input signals. It is possible to bypass any sensor 
signal preprocessing when utilizing RBF network as well as 
MLP networks. 

2.3 Solution using SOM neural network 

SOM stands for self-organizing map and this category of 
neural network will be represented by Kohonen neural ne-
twork (Fig.6). SOM networks are specific in training, which 
does not need a supervisor. The number of inputs to the 
network is equal to the dimension of the input signal vector, 
which make up the patterns. Patterns are encoded into the 
connection weights of the inputs. SOM network is usually a 
planar grid, in whom the neurons are the outputs at the 
same time. Thus the number of outputs is equal to the num-
ber of neurons. The outputs of neurons in neighbour are 
connected each other. The one and only difficult operation 
that neurons perform is computing the distance between a 
passed pattern and the patterns encoded in the connection 
weights, according to the Euclidean relationship (2). 

At the beginning of the learning process all connection we-
ights are set to the small random values. So, each neuron 
will have got its own original weight vector. During the lear-
ning process, neighbourhood of the winning neuron and 
learning rate coefficient are slowly decreasing. In the evalu-
ation process the network is searching for a neuron which is 
closest to the input data. Then the group or class, in which 
the neuron belongs to, is determined. Any unknown patterns 
passed to the network will be categorised to the nearest 
clusters. This property is known as generalization. 

 
Fig.6 Structure of SOM neural network 

The neural network uses Euclidean metrics. For pattern 
recognition the vector space orientation is more important 
than the absolute value of the vector elements. Therefore 
the vector length is usually eliminated. Vector normalizing 
was described in the section "Example on Identification". 
Realization of vector normalizing in smart sensor system is 
relatively difficult computing operation. Even when the root 
is not needed be calculated in case of searching for the 
closest pattern. 

A possible solution to the given example is as follows; From 
figure Fig.5 and by analysis of all reference patterns the 
same way it results that there is enough space between 
every reference pattern and any pattern for other status. 
This allows skipping any signal preprocessing like vector 
normalization. So, the network will be made from 4 neurons 
aligned in the 1x4 array. Thus, each neuron is in neighbour-
hood with 2 other neurons except the outers. Training data 
set contains 4 vectors vi each of that have 3 elements (the 
number of inputs to the network is equal to the number of 
sensors): 

 v1 v2 v3 v4 
S1 2,25 5,25 0,75 8,75 
S2 8,75 2,75 7,25 4,25 
S3 1,25 3,25 8,25 5,25 

Elements are equal to the middle of the output ranges of 
particular transfer characteristics, so Euclidean distances to 
the end points are identical. 

The network output is additionally defined because after 
every initialization (setting of connection weights to the ran-
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dom values) and network training the neurons can be active 
for different classes. 

2.4 Solution using fuzzy system 

Block scheme of a fuzzy microprocessor is depicted in figu-
re Fig.7 that clearly explains the functionality of fuzzy sys-
tem. Input variable x has crisp value to which fuzzy sets are 
applied in the block fuzzification. Next it follows the inferen-
ce mechanism block that evaluates all the fuzzy rules stored 
in the fuzzy rule base block. The fuzzy rule base is fully 
programmable through the programming interface. The 
operating memory block is used at every operation. The 
defuzzifikation block produces crisp outputs y from the fuzzy 
values that are the outputs of the inference mechanism 
block. Signal conversions are supported by the analog-
digital ADC and digital-analog DAC. Appropriate fuzzy mo-
dels for solved problem are Mamdani- or Sugeno-type fuzzy 
system. They differ in the consequents of the fuzzy rules, 
where the Mamdani-type uses singletons or fuzzy sets and 
Sugeno-type uses constants or polynomial functions. 

 
Fig.7 Block scheme of fuzzy microprocessor 

 
 a) b) 

 
 c) d) 
Fig.8 Membership functions: a) rectangular, b) trape- 

zoidal, c) bell, d) two-sided gaussian curves 

Since the sensor output signals are changing within particu-
lar intervals according to transfer characteristics, it is possib-
le that these intervals determine parameters of the fuzzy 
sets. In order to get a simple solution of given example, it 
will be considered membership functions µij(x) with rectan-
gular curves (Fig.8a), for which it holds: 

( )
⎩
⎨
⎧ ∈

=
else

;if
0
1 ijij

ij
baxxµ  

where aij and bij are the boundaries of the i-th sensor output 
signal interval for the j-th scene status. Similar membership 
function curves are trapezoidal (Fig.8b), bell (Fig.8c) or two-
sided gaussian (Fig.8d) curves.In the evaluation process, it 
is usually used the firing strength of a rule instead of direct 
usage of the output value [5]. The higher firing strength of a 
rule is, the higher is validation of the consequent of a fuzzy 
rule. The solution presented next utilizes direct output of the 
fuzzy system. 

 
Fig.9 Fuzzy sets for signal from sensor S3 

Though fuzzy sets can overlap one another, at some cir-
cumstances overlapping of fuzzy sets might cause classes 
count reduction or ambiguous results. In figure Fig.9 are 
shown the fuzzy sets for sensor S3. The symbolic name 
S3B1, for example, stands for fuzzy set that covers signals 
from sensor S3 when status B1 appears. It is obvious that 
fuzzy sets are not overlapping one another. That means the 
output signal of sensor S3 would be enough for status identi-
fication. However, this is only an exception because of sim-
plicity of the given example. Parameters of fuzzy sets are 
listed in Tab.3. In the first column are listed symbolic names 
of fuzzy sets. The second column contains intervals of out-
put values of measuring transmitter with sensor S3. And the 
intervals of x̂  obtained from 10-bits ADC are listed in the 
last one. Variables a and b represents the fuzzy sets para-
meters. 

Tab.3 Parameters of fuzzy sets for sensor S3 
 U[V] [a;b] 

S3B1 <0,5;2,0> [51;205] 
S3B2 <2,5;4,0> [256;409] 
S3B3 <7,5;9,0> [767;921] 
S3B4 <4,5;6,0> [460;614] 

The number of inputs into fuzzy system is equal to the num-
ber of elements in a reference pattern. When adding a new 
pattern, one needs just to add several new fuzzy sets and 
fuzzy rules without modifying any old one. That is, neither 
the training of the fuzzy system, nor pattern vector normali-
zation is needed in this case. While signals from the sensor 
system are incoming directly into the fuzzy system, the 
scheme shown in figure Fig.1b can be utilized. 

Fuzzy rules of the fuzzy system are following: 
if S1 is S1B1 and S2 is S2B1 and S3 is S3B1 then y is B1 
if S1 is S1B2 and S2 is S2B2 and S3 is S3B2 then y is B2 
if S1 is S1B3 and S2 is S2B3 and S3 is S3B3 then y is B3 
if S1 is S1B4 and S2 is S2B4 and S3 is S3B4 then y is B4 
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where Si are the output signals from the sensor system, SiBj 
is the fuzzy set in the antecedents of the rules for the i-th 
sensor and the j-th scene status and Bj is the fuzzy set in 
the consequent of the rules. The strength of a rule determi-
nes the output value y. The number of the rules is equal to 
4, which is equal the number of the reference patterns. 

By adding the following fuzzy rule to the inference mecha-
nism: 
if S1 is not S1B1and S1 is not S1B2 and S1 is not S1B3 
and S1 is not S1B4 then y is D1 

one obtains a simple diagnostics that can detect failure of 
measuring channel with sensor S1. Malfunction of measu-
ring channel with sensor S1 will be signalled by output y 
equal to D1. 

Conclusion 

In this article were presented several solutions for example 
given in the previous part using artificial intelligence means. 
The obtained results show that they offer a perspective 
alternative to classic methods for pattern recognition tasks. 
Their essential properties for use in smart sensor systems 
are summarized and rated in the following table: 

 MLP RBF SOM fuzzy 
operation 
count 

+ + + - - - + + 

computational 
demand 

+ + + - - - - - - + 

The solutions have utilised MLP, RBF and SOM neural 
networks and fuzzy system, each of which is something 
specific. MLP neural network has a simple structure, howe-
ver the classes must be linearly separable. RBF network 
better perform cluster analysis and training can be done in 
one step. SOM network creates groups or classes by your-
self without supervisor training. Fuzzy system works with 
linguistic variables and offers simple diagnostics of measu-
ring channels. 

Absolute value of measured signals has some kind of useful 
information for identification purposes. It is not effective to 
avoid it. All presented approaches do not require any pre-
processing of measured signals (normalization, bias remo-
val) from sensor array, whereby considerable reduction of 
required operations have been achieved. Classificator ba-
sed on MLP neural network or fuzzy system are easily ap-
plicable to emulation in classic monolithic microcomputer in 
smart sensor system. 

When designing a neural design, the final structure, training 
data set and training method are very important to achieve 
satisfied results. It rules that network should be easy imple-

mentable, which is a important feature for emulation of the 
network algorithm in a classical microcomputer. Thanks to 
hardware devices accelerating functionality of artificial intel-
ligence means, the intelligent unit of smart sensor system is 
getting less busy. Implementing such devices into smart 
sensor systems has the future perspective. In comparison 
with the classic methods, the quality of sensor signal pro-
cessing will be at a higher level. Pattern recognition is an 
necessary step for implementation of artificial intelligence 
into smart sensor systems. 
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