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Abstract 
The aim of this article is to expose the developed method for solution of experimen-
tally obtained sensor characteristic approximation in microcomputer. This process 
should fulfill demands given by claims on data processing, for example linearization 
of sensor characteristic. Errors in the system were analyzed – error of method, 
rounding error, influence of ADC and the appropriate linearization method choosing 
technique was designed. The comparison of efficiency of methods was executed in 
several examples. 
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Introduction 

With higher quality of each technical element in the control 
system structure higher demands are put on process value 
measurements. Today measurement devices should be 
able to work with correspondent metrological and functional 
qualities. This is achieved by using microcomputer in the 
measurement channel structure, fig.1. 
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Fig.1 Intelligent measure element 

Smart sensor system (SSS) is autonomy digital system 
characterized by primary data processing (PSI), diagnostic 
and auto-calibration functions and communication control. 
The advantages of SSS are especially higher quality (better 
evaluation of original signals obtained from sensing ele-
ment, better functional qualities, higher safety, less de-
mands on communication system) and then more effective 
performance of digital (local or total) control centre. Because 
data from intelligent measurement element are primary 
processed, they give actual, accurate and reliable (clean) 
information about the state of controlled process (process 
value) and this accelerates realization of control algorithm 
and reaction to physical values. 

Besides acquiring of output signal from sensor element and 
AD conversion, there are implemented these functions of 
PSI into SSS in particular: linearization of sensor characte-
ristics, filtration of incoming signal, reduction of measured 
values, disturbance correction, dynamic error correction, 
indirect measurement, other computations etc.. In these 
cases there are implemented mathematical functions in the 
microcomputer. Therefore accurate and demands meeting 
realization of these functions is important. Considering limi-
tations of digital processing in SSS, e.g. small memory, 
small computing capacity, it is inevitable to use approxima-
tions in many cases. Approximation is especially necessary, 
if the real mathematical description of realized function is 
unknown. Using approximation for digital linearization of 
sensor characteristics will bee discussed. 

1. Linearization of sensor characteristics 

Natural feature of many sensors is their nonlinear character-
istic. In SSS digital linearization is fundamentally used, but 
SSS producers usually reduce the nonlinearity in analog 
part of measurement channel too. More important is to en-
sure repetition of the analog part. In the fig.2 there is out-
lined process of linearization using the inverse sensor char-
acteristic. 
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Fig.2 Linearization of sensor characteristic 
Sensor characteristic is y1 = f(x1) in the microcomputer 
it is embedded inverse characteristic x2 = f(y2) so that it 
makes the whole characteristic to be linear x2 =kx1. 

For the linearization in microcomputer the approximation 
errors by different approximation methods – error of method 
– and also rounding error and influence of AD converter 
should be analyzed. 

2. Methods for mathematical  
function approximation  
in the microcomputer memory 

Consider n+1 number of values (arguments) 
x0 < x1 < x2 <...< xn and functional values y0 = F(x0), 
y1 = F(x1), y2 = F(x2), ... , yn = F(xn), where F is unknown real 
function. The task is approximation of the function F. Sev-
eral methods can be used for this purpose. The method 
selection depends on our knowledge about the function 
besides the function values in given arguments. Two ap-
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proaches are distinguished. In this paper Newton interpola-
tion polynomials (NIP) are used with respected nodes. 

2.1 Respecting of nodes 

In this case approximation consistently respects the given 
values y0, y1, y2,...,yn in arguments x0, x1, x2,...,xn, named 
also nodes or poles (fig.3). This is actually interpolation, 
which is approximation between nodes. If the approximation 
function Fa is used outside of the interval 〈x0, xn〉, it is called 
extrapolation. Interpolation (extrapolation) is used, if errors 
in values yi (acquired through experiment - measurement) 
could be neglected. For example values yi are obtained by 
means of statistics methods (mean value), which is possible 
in easy and reproducible measurements such as pressure 
or position measurements. Next example is particularly 
accurate measurement. In this case it is also recommended 
to repeat the measurement more times. Error is limited with 
distance of nodes or information about the smoothness 
(shape) of the function. By sensor characteristic approxima-
tion for every interval 〈x0, x1〉 (or for every two or three inter-
vals depending on polynomial degree) other approximation 
function (polynomial) is usually employed. The whole ap-
proximation function is composed from these partial func-
tions. 
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Fig.3 Approximation with respected nodes 
F – unknown function, Fa – approximation function 

2.2 Unrespected nodes 

This is the approximation, where function values yi obtained 
by measurement are inaccurate or they are not respected 
because of other reasons and approximation function could 
go only near to them as depicted in the fig.4. The reason of 
inaccuracy can be a very difficult experiment or too low 
number of measurements. By this approximation method 
only one approximation function can be employed for the 
whole scale or for two or three intervals. There are several 
conditions used to decide about the best proximity of two 
functions. The best known condition is the least squares 
estimation. 
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Fig.4 Approximation with not respected nodes 
F – unknown function, Fa – approximation function 

3. Newton interpolation polynomial 

Interpolation polynomials are based on Lagrange polynomi-
als. If it is supposed that difference between poles xi is con-
stant, it means the step 

ii xxh −= +1  (1) 

is constant, the notation of the polynomial can be adjusted 
into the form of Newton interpolation polynomial (NIP) Nn(x) 
defined as 
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where ∆kyi is difference of degree k in the node xi: 
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Disadvantage of polynomial interpolation is parasitic oscilla-
tion tendency when using higher number of nodes (higher 
degree of polynomial). This is the reason why polynomials 
of high degree are not used in sensor technique. For ap-
proximation of inverse sensor characteristic it is suitable 
only NIP of degree 0, 1 or 2, fig.5. Approximation function 
arises as a combination of required l polynomials of degree 
m for n+1 nodes 
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If m>0, number of polynomial l is 

m
nl =  (5) 
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Fig.5 Approximations with NIP 

3.1 NIP of degree 0 

Newton interpolation polynomial of degree 0 (NIP 0, fig.5) 
means only directly measured values – poles 

( ) ( ) ( )iii xFxNxFa == ,0  (6) 

This method is also called table method, where every re-
membered value Fai(x) = F(xi)=yi is NIP of degree 0. Every 
value will be used for approximation on one interval there-
fore small adaptation must be made in the equation (4) 
(originally approximation function Fai(x) is valid for 
x∈(xi,xi+0)): 
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Number of polynomials is l=n+1. 

3.2 NIP of degree 1 

Newton interpolation polynomial of degree 1 is linear equa-
tion given by two points 
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It is interpolation with linear functions (fig.5) 
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For this case number of polynomials is l=n. 

3.3 NIP of degree 2 

Newton interpolation polynomial of degree 2 is square func-
tion solved from three points (fig.5) and it holds: 
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Final approximation function is composed from l of these 
polynomials, while l=n/2: 
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4. Errors of approximation  
in microcomputer 

The basis for approximation process is required accuracy of 
approximation in microcomputer. Accurate class of digital 
processing AcC results from intended accurate class of 
whole digital measuring element (DME) AcDME and of analog 
measuring element (AME) AcAME, because for block scheme 
in the fig.6 it can be written (equation for serial element 
placement) 

2
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DME

AME C
AcAME AcC

AcDME

xy x*

 
Fig.6 Block scheme of digital measuring element 

while accurate class of approximation is 

[%]100*
FSx

Ac C
C

∆
=  (13) 

where ∆C is maximal approximation error and x*FS is full 
scale of microcomputer output value x* (because by lineari-

zation in the microcomputer maximal nonlinearity error of 
AME is reduced, this error must not be involved in AcAME). 
Maximal absolute error of digital processing ∆C will be the 
input requirement. 

On the other hand mainly approximation error ∆APP should 
be taken into account, which is given by maximal deviation 
between approximation and approximated function. For 
Newton interpolation polynomials approximation error could 
be solved from the general relation for error of polynomial 
interpolation (polynomial of degree n) - this equation is de-
rived from statement of Rolle from mathematical analysis - 
[3] 
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where Mm+1 could be determined as a maximal value of 
approximation function derivation ⎜ F m+1( ξ ) ⎜ for the whole 
scale ξ∈ (x0, xn). In the sensor technique inverse sensor 
characteristic is usually unknown therefore the analytical 
formulation of derivation F m+1 of degree m+1 is unknown 
too. The value Mm+1 could be estimated by means of differ-
ence ∆ m+1F(xi) [3]. Maximal value E corresponds to the 
maximal error of mathematical approximation ∆APP: 

( )( )xEE maxmax =  (15) 

( ) ( )( )xFxFa −=max∆APR  (16) 

and requirement is: 

APRmax ∆≤E  (17) 

According to this the maximal approximation error ∆APP 
could be estimated and expression between this error and 
the step h could be found. If the accuracy demands are 
high, it is better to use simulation. 

Next error which should be taken into account is rounding 
error ∆R. Influence of this error on the overall error ∆C has to 
be investigated. As a limitation for overall interpolation or 
extrapolation error by approximation of function F with La-
grange polynomial it could be declared value [3] 

EHR += R∆  (18) 

The condition should be fulfilled 

C∆≤R  (19) 

If the maximal rounding error is different from zero, for ap-
proximation error can be written 

( ) RCAPRmax ∆∆∆max HEE −=≤=  (20) 

It means that because of rounding error approximation must 
be designed with smaller error so, that after considering 
both of these errors the approximation meets the require-
ment given by the value ∆C. It can be shown that in our 
cases (NIP of degree 0, 1 and 2) is H=1 and approximation 
is projected with error 

RCAPR ∆∆∆ −=  (21) 

The last error, which is considered, is error caused by AD 
conversion ∆’AD. In the microcomputer there is realised 
nonlinear function. This function causes change of maximal 
error of AD conversion (quantization error) from ∆A to ∆’AD 
an for the relative error 

ADAD δδ' ≥  (22) 
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Errors would be equal if a linear function is implemented. 
Process of error change is shown in the fig.7 (axis are la-
beled according to the fig.6). Somewhere inside of meas-
urement scale error might be reduced but maximal error is 
always bigger due to the nonlinearity. It can be estimated by 
means of first derivation of approximated function. 
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Fig.7 Influence of nonlinear function  
on the error of AD conversion 

Resuming all mentioned errors it was found out that the sum 
of all errors influencing approximation in the microcomputer 
must be smaller than demanded error 

CADRAPR ∆∆'∆∆ ≤++  (23) 

5. Realization 

Function approximation was implemented into 
a microcomputer. Fig.8 shows NIP of degree 1 employed for 
sensor characteristic linearization. The points in this graph 
are the nodes and every line between two nodes is one 
polynomial. The scale of input Nx value indicates usage of 
10-bit ADC. 

Ny

Nx  
Fig.8 Inverse characteristics approximation  
using NIP of degree 1 

Nx  
Fig.9 Error of approximation with NIP of degree 1 

Dependence of approximation error from input value Nx is 
depicted in the fig.9. This could be drawn if the approxi-
mated function (original) is known. 

In the microcomputer the value in each point is rounded, 
first in AD converter and then in output (DAC or display). 
The difference between mathematical approximation and 
function implemented in microcomputer could be seen in the 
fig.10. The error function forms “envelope” of the mathe-
matical approximation error function, fig.11. 
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Fig.10 Comparison of mathematical  
and implemented approximation 

Nx       

Nx  
Fig.11 Error of approximation  
in the microcomputer in details 

Conclusion 

Approximation with Newton interpolation polynomial has 
been theoretically described. For approximation with poly-
nomial in the microcomputer error analysis has been made. 
Three major error sources has been considered and in-
cluded in the final equation (23) for approximation error. 
Understanding of error sources is the basic part for ap-
proximation design which is the main part of digital sensor 
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characteristic linearization. The examples of errors from the 
approximation design have been demonstrated. 
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