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Abstract  
In its first part the paper summarises main approaches to the unsupervised  
learning. The topic is then narrowed to the problem of finding a structure that  
is hidden in a set of sensor data with the aim to distinguish between robot’s  
normal and faulty behaviours. The second part is focused on the application  
of Adaptive Resonance Theory – (ART) based clustering of  “suspected”  
and possibly faulty behaviours of a walking robot.  
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Introduction 

The unsupervised learning, that is learning without a teacher 
has long been considered to be one of the most fundamen-
tal models of learning and understanding and thus a striking 
feature of intelligent systems. The unsupervised learning 
paradigm can be found both at the sensory level of animals 
and at higher, cognitive level of humans. It still remains a 
hot topic of the neural networks research (see e.g. [1], [2], 
[3]).  

In a view of the learning theory the clustering is a kind of 
unsupervised data driven learning. During learning the sys-
tem tries to find a “structure” inside a (large) set of unlabeled 
information chunks. The “structure” is established by finding 
a certain kind of similarity between the members of the 
same cluster, or in other words, by finding intra-cluster simi-
larity and inter-cluster dissimilarity. 

The unsupervised clustering is even possible when a trai-
ning set and class definition are, regardless of reasons, 
unavailable. However, one generally needs to know in ad-
vance, whether natural clusters actually exist in a given data 
set. The thing is that if such natural clusters do not exist, the 
clustering process may lead to finding artificial and meanin-
gless structure. The process of determination whether the 
structure exists within data is a poorly studied problem, 
known as “determination of the clustering tendency” of a 
data set. [4]  

The neural networks that are based on unsupervised lear-
ning may perform natural clustering on the basis of the simi-
larity (with respect to a chosen similarity measure) between 
input patterns. As to the clustering enables discovering 
hidden similarities between items of a large data set it also 
enables grouping data into a small number of clusters. Due 
to this the clustering is an important tool in data mining (an 
umbrella term for variety of analytical techniques of know-
ledge discovery) and creates the basis for solving many 
advanced scientific and engineering problems where large 
amounts of apparently disordered data are to be succinctly 
comprehended.  

As indicated above, the similarity is commonly evaluated on 
the basis of an adopted similarity criterion. The criterion may 

be either distance-based, or conceptual–based. Depending 
on the dimensionality of the data space or existence of the 
correlations between data items, the distance-based simila-
rity is expressed through an appropriate distance measure, 
like Euclidean distance, Minkowski distance, Mahalanobis 
distance and others [5]. The typical representatives of the 
distance based algorithms are the K-means algorithm, allo-
wing a crisp membership or C-means algorithm allowing 
partial memberships to two or more clusters. [5]  

In the realm of neural networks, the typical representatives 
of the conceptual clustering are Kohonen’s self organizing 
maps (SOM) [2] and Grossberg’s adaptive resonance theory 
(ART) networks. [1]. The SOMs are low-dimensional grids of 
nods, each nod representing a model of particular observa-
tion. During learning the SOMs compress and convert 
nonlinear statistical relationships between high-dimensional 
data into low-dimensional displays while preserving the 
most important topological features of the primary data. 
After learning the neighboring nods represents similar ob-
servations. But the fact of compressing data while preserv-
ing topological features is in essence a kind of abstraction, 
or a kind of the creation of a concept, or a kind of percep-
tion. 

The control community is familiar with the term of "intelligent 
control", connoting the abilities that the conventional control 
system cannot attain, like making complex decisions, adapt 
to new conditions, self-organizing, planning future activities, 
and the more. An autonomous robot is a particular example 
of the intelligent system. Its functionality relies on numerous 
disparate sensors through which the robot grasps consistent 
knowledge of what is going on around it. Therefore the robot 
is required to respond to instantaneous incentives coming 
form the surrounding environment. To this end it needs to 
handle wide range of unexpected events and distinguish 
between common (normal) and unusual contexts.  

Soft computing techniques should be considered as mere 
building blocks or even "bricks" used for building up a "large 
house" of any intelligent system. What makes robots intelli-
gent is just a synergic use of these techniques, which in 
time and space invoke, optimize and fuse elementary beha-
viours in order to produce an appropriate overall behaviour. 
System intelligence comes from the system architecture i.e. 
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from an inner modular structure of the both system elements 
and functionalities. One striking example of the robot intelli-
gence is the subsumption architecture developed by Brooks 
[6]. Another example is the robot’s ability to maintain its own 
“health” by early detection, identification and classification of 
the both imminent and existing faults and in such a way to 
prevent its functionality from fatal failures. 

1. Detection, clustering  
and classification of robot’s faults  

Due to the extensive use of complex mechanical compo-
nents like arms, legs, actuators, gears, clutches, grippers 
etc., the robot’s mechanical parts suffer from significantly 
higher fault rates than pure electric and electronic circuitry. 
These faults must be detected, identified and classified in 
accordance with their criticality, and appropriate measures 
to compensate them must be taken in order to prevent the 
system from failure. The system should be able to anticipate 
possible faults on the basis of certain “pathologic” behavio-
urs, that is those, which are novel and suspected in compa-
rison with normal functioning. In this view the incorporation 
of an appropriate mechanism of detection of novelties be-
comes necessary. Imminent failures are often manifested 
through the declined values of system parameters and va-
riables or their fused complexes. The idea is to identify any 
deviation from normal behaviour. The component degrada-
tion, like wear, increased friction, stiction due to contamina-
tion, corrosion etc., is related to an observable effect on the 
system performance (higher vibrations, increased friction, 
decreased positioning precision etc).  These relationships 
may change as the process of performance degradation 
progresses.  

Over the past three decades numerous approaches to fault 
management have been developed. They range from chec-
king the limit values or trends to those based on the state 
and/or parameter estimation, fault trees, and the artificial 
intelligence based systems, like expert systems, case-based 
reasoning systems, and fuzzy and neural learning approa-
ches. It is beyond the scope of this paper to even summari-
ze all these solutions. Therefore, in the sequel will be des-
cribed a neural, unsupervised-based learning mechanism of 
novelty detection clustering and classification  

It is known that one serious problem with neural classifica-
tion is that, in real situations, the problem domain does not 
always behave well in a sense that if some unexpected and 
strongly different input patterns appear the neural system 
cannot manage it appropriately, because it has no built-in 
mechanism to recognize and store them without deteriora-
ting performance.  Said it in a different way, the system 
should preserve previously learned patterns (so called prob-
lem of stability) while keeping its ability to learn new patterns 
(so called problem plasticity). This phenomenon is known as 
a stability-plasticity dilemma. An elegant solution to this 
problem provides a family of the neural networks based on 
the “adaptive resonance theory” (ART), developed by Gros-
sberg and Carpenter [1].  

The ART family of neural networks perform competitive 
learning. Its architecture is able to cluster input patterns on 
the basis of a given measure of similarity. In particular, the 
ART1 network used in the authors’ experiment, allows the 
incremental learning of prototypes, rather then instantaneo-
us input exemplars. The clusters of similar inputs are upda-
ted by using information from the currently presented input 
pattern. In this way every cluster preserves main features of 
the accepted similar input patterns. 

The next paragraph briefly describes the way of using the 
ART neural network for clustering “suspected” torques that 

appear in the robot leg joints when the robot walks. Besides 
the competitive learning used as a basis of a learning philo-
sophy the ART network is further improved to be able to 
deal effectively with the stability–plasticity dilemma, i.e. it 
should be sufficiently stable in retaining already learned 
inputs, while sufficiently susceptible (plastic) to acquire new 
inputs. Too much stability means that the network is “stub-
born” when learning new inputs, while too much plasticity 
could cause that newly learned inputs may deteriorate those 
learned previously. The ART neural networks resolve this 
problem by introducing the phenomenon of resonance, 
meaning that the current input is compared with all already 
stored prototypes. If it does not match sufficiently any of 
stored prototypes (resonance does not take place) and the 
ART creates new prototype. In this way the previously lear-
ned inputs are not deteriorated by the newly accepted ones. 
Significant advantage of the ART is an ability to discover 
concepts of various levels of abstractions, which are hidden 
in the input data. This is achieved with the vigilance parame-
ter, which determines whether the currently presented input 
pattern should be recognized as an already known concept 
or as a novel pattern. 

The ART1 shown in Fig.1 consists of two fully connected 
layers. The pattern-representation layer F1 accepts an input 
pattern and through the button-up weighted connections bij 
(initially set to one) sends it to the cluster-representation 
layer F2. The (binary coded) input pattern “I” is created as a 
concatenation of particular sensor outputs and/or flags of 
communication errors. Due to a competition-based “winner-
takes-all” paradigm that is evoked by lateral negative feed-
back (-ε), a neuron in the F2 layer, which receives the hig-
hest button-up activity is declared a winner. Its output is set 
to the unit value and projected back to F1 through the top-
down weights tij.   
 

 
Fig.1 The ART-1 network 
 

If the similarity between the projected winner and the input 
pattern proves to be greater then a given value of the vigi-
lance ρ, a “resonant state” occurs and the weights tij , bij are 
(by different ways)  moved closer to the input pattern (lear-
ning). If the resonant state does not occur, the winner is 
disqualified and the process searches for the second best 
matching neuron, which is then submitted to the vigilance 
test. Searching repeats until either vigilance test passes or 
no more neurons are available for testing. It is just the set 
value of the vigilance that calibrates how much novelty the 
neural network can tolerate before it clusters and classifies 
the input pattern into particular class. The experiments have 
shown that the ART-1 is fully justified for using as a means 
for the novelty detection and classification of patterns of the 
behaviours. 
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2. Experimental results 

Efficiency of the developed neural classifier was verified by 
both simulation and by experimentation with the specially 
developed legged robot. The simplest and the most evident 
faults like those related to control sequences that control the 
movement of joints or the faults appearing during switching 
between robot gaits or  incorrect coordination of legs due to 
improper timing (fall out of phase or fall out of step and the 
like), were easily detected and classified by a deterministic 
final-state machine. Contrary to the erroneous control sequ-
ences, much more complex faults may be caused by the 
increased friction in bearings, slipping or dragging clutches, 
lack of a lubrication or partial losses of the energy delivery 
to the leg’s joints. Malfunctions of this kind may remain 
hidden for longer time and may gradually lead to fatal failu-
res, like the total destruction of bearings or drives, lagging 
legs movement, which could jeopardize the walking stability 
or even cause instability of the robot. Such faults are com-
monly manifested through abnormal trajectories of the joint 
torques or forces.   

The joints of the experimental robot are equipped with tor-
que sensors, which sense current time dependences of the 
joint torques. Every leg can be either in a stance state, when 
it supports the robot body or in a swing state, when it moves 
in air to the position where it can begin a new stance. A 
time-course of the normal (faultless) torque exerted in a 
femur joint is shown in Fig. 2. One complete step cycle is 
performed in three phases, each lasting one second. As 
seen from the figure, these three phases can be easily ob-
served from the torque-time dependence. Particular phases 
are supplemented with  imbedded sub-figures depicting the 
leg configuration that corresponds to the current phase. 
During the first phase the leg remains in a flexed configura-
tion in the stance. The femur joint exerts the torque value 
about 30 Nm, which maintains an attitude of the robot body. 
The second phase starts at one second. The leg is uncoup-
led from the ground and starts its movement in a direction of 
walking. While the torque exerted in the femur joint causes 
raising the leg, the coxa joint is rotating the leg about the 
vertical axis and the tibia joint is extending the leg. When 
reaching the highest position the femur joint exerts maxi-
mum torque. Just after the third second the femur torque 
slightly decreases so as to make the foot go down until it 
reaches the ground. At this moment (at about the fourth 
second) the leg is entering into its stance state again, and 
supports the robot body.  

During learning, the neural network ART1 is first taught to 
learn the normal torque time course. As a result, the neural 
network appoints the normal torque course as the centre of 
a receptive field of the cluster of all “approximately normal” 
torque patterns.  This is done by adaptation of the bottom-
up weights leading to the most left neuron in the layer F2. 
From this time on the unit output of this neuron will indicate 
that the current input belongs to the cluster of  “approximate-
ly normal“ torque courses and this cluster will represent a 
class of normal torque courses. Then a training list, i.e. a 
series of faulty torque patterns was repeatedly presented. 
The experimental results have shown that the learning task 
may be considered as accomplished after presentation of 
about 5 or 6 epochs. After learning the neural network be-
comes able to successfully classify any other set of faulty 
courses.  

 
Fig.2 Normal torque in the femur joint 
 

The results obtained are briefly summarized in Fig.3. Faulty 
torque patterns were subsequently presented to the previo-
usly learned ART1 network. Each of them corresponded to 
a particular fault as indicated by the text under graphs. For 
the vigilance “ρ”  set to the value 0.8, the input patterns 
were classified into five distinctive classes. Raising the vigi-
lance to 0.9 meant that the system was no longer willing to 
tolerate so much novelty (dissimilarity to the normal pattern) 
as before. A direct consequence of the increased vigilance 
was creation of as many as eight classes that, for the sake 
of brevity, are not shown.  
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Fig.3 Results of classification for the vigilance value 0.8 
 
 

Conclusion 

An intelligent robot operating autonomously in an unknown 
environment is a particular instantiation of an intelligent 
system. As such, it is expected to exhibit abilities beyond 
those attainable by traditional robots. To this end, sensor 
data should be fused into information-rich patterns, which 
are further clustered and classified into classes correspon-
ding to various contexts. (Issues of the sensor fusion were 
not included here). Due to the classification of the contextual 
information the robot is able to distinguish between normal 
and erroneous patterns of behaviour and take appropriate 
measures. The methodology described above was used in 
the development of the learning neural-based fault detection 
and classification.  

The results obtained provide sufficient evidence that the 
ART1 neural network is a very flexible and reliable means 
for detection and classification of the novelties that appear 
in the robot behaviour. Contrary to other neural or statistical 
approaches, there is no need to specify number of classes 
in advance. Based on value of the vigilance “ρ”, the network 
classifies input patterns into so many classes, how many is 
required for separating dissimilar input patterns. In more 
complex cases the system can detect and classify even 
contexts i.e. a composite states of the robot together with its 
environment.  
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Abstract  

The paper in its first part the paper summarises main ap-
proaches to the unsupervised learning. The presented topic 
is then narrowed to the problem of finding a structure tahat 
is hidden in a set of sensor data with the aim to distinguish 
between robot’s normal and faulty behaviours. The second 
part is focused on a possible application of the Adaptive 
Resonance Theory (ART) - based clustering of  faulty beha-
viours of a walking robot. 
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