
Modelling and control  
of nonlinear system  

David Sámek, Petr Dostál 

Abstract  
This paper is focused on modelling and control of nonlinear system of two intercon-
nected cylindrical tanks. The first part of paper is devoted to brief introduction to 
theoretical background. Then, the mathematical model of the real-time laboratory 
system is derived. The experimental measurements were made after the mathe-
matical modelling in order to obtain parameters of the mathematical model. After 
that, the simulation model in the Matlab/Simulink was developed using S-Function 
feature.  The presented controller is based on model predictive control method using 
artificial neural network as a predictor. In this contribution are compared two different 
artificial neural networks. 
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Introduction  

The increasing demand on production systems and the 
need for constant changes in the normal operating condi-
tions of industrial processes is reflected in the development 
of more reliable control systems. In fact, new production 
systems represent complex and highly nonlinear engineer-
ing problems where the conventional linear control methods 
can hardly be successfully applied. Additionally, the overall 
complexity of the control problem is increased when consid-
ering physical, environmental or safety constraints to be 
followed during process operation. Therefore, the urge in 
finding faster and more reliable solutions for highly nonlinear 
control problems in constrained environments is one of 
today’s trends in modern control. 

Model predictive control (MPC) [1] is a very attractive con-
cept for the development and tuning of nonlinear controllers 
in the presence of input, output or state constraint. The MPC 
controllers contain predictors that predict the controlled 
system output. One of successful approaches for prediction 
is usage of an artificial neural network (ANN). 

Many predictive control techniques based on MPC that use 
artificial neural network as a predictor are established on 
multilayer feed-forward neural networks [2], [3]. In spite the 
multilayer feed-forward neural networks (MFFNNs) have 
many advantages such as simple design and scalability they 
have also many drawbacks such as long training times and 
choice of an appropriate learning stop time (the over-
learning versus the early stopping). 

Nevertheless, there are quite a number of types ANNs suit-
able for the modelling and prediction. Recurrent artificial 
networks are very promising for modelling and prediction of 
nonlinear systems [4], [5], [6]. Radial Basis Function (RBF) 
artificial neural networks are popular for their rapid training 
[7], [8]. 

In this article adaptive linear networks (ADALINEs) are pre-
sented. ADALINEs offer even faster training and shorter 
computational times [9]. As a comparative method the 
MFFNN was chosen. 

This paper is organized in the following way. Section 1 pre-
sents brief introduction to Model Predictive Control methods. 

Section 2 deals with the description of Adaptive linear net-
works. Section 3 presents short introduction to Multilayer 
feed-forward neural networks. The mathematical description 
of the controlled system is provided in Section 4. In the 
Section 5 we explain the structure design of the predictors 
that were used in the paper. This section is followed by 
simulations and results in Section 6. The paper is concluded 
by results discussion in Section 7 and with some final re-
marks in conclusion. 

1. Model predictive control using ANN  

There are various approaches to predictive control by artifi-
cial neural networks. Generally we can say that these meth-
ods use ANN as the plant model in order to get its output 
predictions. The most used approach is model predictive 
control [1]. MPC is a broad control strategy applicable to 
both linear and nonlinear processes. 

The main idea of MPC algorithms is to use a dynamical 
model of process to predict the effect of future control ac-
tions on the output of the process. Hence, the controller 
calculates the control input that will optimize the perform-
ance criterion over a specified future time horizon: 
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where N1, N2 and Nu define horizons over which the tracking 
error and the control increments are evaluated. The ut vari-
able is the tentative control signal, yr is the desired response 
and ŷ  is the network model response.  

The parameters λ and γ determine the contribution that the 
sum of the squares of the future control errors and the sum 
of the squares of the control increments has on the per-
formance index. 

Typically the receding horizon principle is implemented, 
which means that after the computation of optimal control 
sequence, only the first control action is implemented. Then 
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the horizon is shifted forward one sampling instant and the 
optimization is again restarted with new information from 
measurements. This methodology is adopted in this paper. 

In cases where the model of the process is given as a 
nonlinear combination of the process inputs (e.g. ANN), the 
solution of the standard constrained MPC is necessarily 
more complex. A schematic configuration of such control 
structure is presented in figure 1. Due to nonlinear nature of 
ANN prediction model a nonlinear optimization problem 
must be solved through a numerical algorithm. 
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Fig.1 Principle of MPC using ANN  

2. Adaptive linear networks 

ADALINE was described by B. Widrow and M.E. Hoff as an 
adaptive threshold logic element in 1960 [9]. Though, the 
original version of ADALINE had only simple two-state 
threshold transfer function with the range of function {-1;+1}, 
nowadays ADALINE is also used with linear transfer func-
tion [10]. Although this structure has limited skills, it is pos-
sible to connect more of ADALINEs together to obtain 
MADALINE (Multiple ADALINE). 

Despite the fact that ADALINEs are able to solve only line-
arly separable problems, it has been shown in practice that 
they can approximate nonlinear functions with the sufficient 
accuracy while using enough number of neurons [11]. Be-
cause of their main advantage that is the very fast learning, 
they have many practical applications, e.g. noise reduction, 
signal processing and signal prediction in control and com-
munication systems. The learning procedure is based on an 
iterative search process, where performance feedback is 
used to guide the search process. In other words, a de-
signer “trains” the system by “showing” it examples of inputs 
and the respective outputs. In this way, the system compe-
tence is directly and quantitatively related to the amount of 
experience the system was given. 

The most popular learning method is simple LMS (Least 
Mean Square) algorithm [9], often called the Widrow-Hoff 
Delta Rule, which is adopted in this paper. This method is 
based on the minimization of Mean Square Error (MSE) 
which is for j-th ADALINE defined: 
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where τ(i) is i-th target neuron output, yout(i) is output from i-
th ADALINE, n is number of training data. For Multiple 
ADALINE (MADALINE) with m neurons is necessary to 
compute global MSE: 
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New weighting matrix W(k+1) and bias vector b(k+1) in the 
step k+1 equal to (for ADALINE W has only one row and b is 
scalar): 

( 1) ( ) ( ) ( )ink k k kα+ = + ⋅ ⋅W W ε u   (4) 

( 1) ( ) ( )k k kα+ = + ⋅b b ε   (5) 

where W(k) is previous weighting matrix, b(k) is previous 
bias vector, α is learning rate from the interval <0; 1>, uin(k) 
is the vector of input data and ε(k) is output error in the step 
k: 

( ) ( ) ( )outk k k= −ε τ y   (6) 

where yout(k) is actual output from MADALINE: 

( ) ( ) ( ) ( )out ink k k k= + ⋅y b W u   (7) 

Faster learning can be reached by higher learning rate α, 
however too high learning rate could lead to instability and 
errors. For stable learning process the learning rate should 
be lower than reciprocal value of highest eigen value of 
correlation matrix ( ) ( )Tk ku u  of the input vector. 
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Fig.2 Simplified scheme of ADALINE  

3. Multilayer feed-forward neural networks 

Multilayer feed-forward neural networks were derived by 
generalization from Rosenblatt’s perceptron, thus they are 
often called multilayer perceptrons (MLP). This type of artifi-
cial neural networks uses supervised training. One of the 
most known methods of supervised training is backpropaga-
tion algorithm; hence these ANNs are sometimes also called 
backpropagation networks. 

In the MFFNN the signals flow between the neurones only in 
the forward direction i.e. towards the output. Neurones in 
MFFNN are organized in layers and neurones of the certain 
layer can have inputs from any neurones of the earlier layer. 
The ability to predict of ANN is determined by capability of 
modelling of certain process. By applying the Kolmogorov 
theorem it was proved that for general function approxima-
tion is sufficient two-layer MFFNN (one hidden layer) if non-
polynomial transfer functions are used and the hidden layer 
has enough neurons [12]. 
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Fig.3 Simplified scheme of 2-layered MFFNN  
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The two-layered MFFNN, which contains one output layer 
and one hidden layers, is depicted in the figure 3 (this struc-
ture is implemented in this paper). This MFFNN can be 
described by the two equations: 

( )2 2 2 1out S= + ⋅y b W x   (8) 

( )1 1 1 1 inS= + ⋅x b W u   (9) 

where yout is the network output vector, Si is transfer function 
of i-th layer, bi is bias vector of i-th layer, Wi is weighting 
matrix of i-th layer, xi is output vector of i-th layer and uin is 
the network input vector. 

4. Two interconnected cylindrical tanks  

Let us consider SISO nonlinear system to be con-trolled 
which is shown in the figure 4 and consist two connected 
cylindrical tanks for liquid. The dynamic model if the system 
is (considering usual simplifications): 

2
1 1

1 14 v
d dh q q
dt

π
+ =   (10) 

2
2 2

2 14
d dh q q
dt

π
+ =   (11) 

1 1 1 2q k h h= −   (12) 

2 2 2q k h=   (13) 

where dj is the diameter, hj is liquid level and qj is the output 
flow of the j-th tank. q1v is the input flow to the first tank. The 
constants associated with the properties of pipes and valves 
are k1 and k2. The objective of the controller is to maintain 
the level in the first tank h1 by adjusting the input flow q1v. 

q1

h1

q1vP

T1

k1

h2

q2

T2

k2  
Fig.4 Scheme of two interconnected cylindrical tanks  

This system is based on real-time laboratory model Amira 
DTS-200 (figure 5) which consist 3 cylindrical tanks and two 
pumps. However, in this contribution only two tanks (T1 and 
T2) and one pump were selected. Thus, the valves V2 and V4 
were fully closed and the valve number 5 was set to the half 
position. 
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T2 T3T1

h2

h1
h3

V1
V2 V3

V4 V5 V6

 
Fig.5 Scheme of DTS-200 

The values of parameters are k1 = 11.53 m2.5/s and k2 = 
13.09 m2.5/s were obtained by experiments on the DTS-200. 
The maximum input flow q1v is 100 cm3/s. The height of the 
tanks is 60 cm and their diameter is 14 cm. 

The mathematical model of the system was programmed in 
the Simulink as S-Function. The Simulink scheme of the 
control loop is illustrated in figure 6. 

 
Fig.6 The used Simulink model of the control loop  

5. Predictors based on artificial  
neural networks  

In this paper two different artificial neural networks are ap-
plied, Adaptive linear network (ADALINE) and Multilayer 
feed-forward neural network (MFFNN). The first is used with 
on-line adaptation while the second one is using only off-line 
identification. 

Nevertheless, in spite of ADALINE’s ability to adapt we used 
off-line identification too in order to get rid of starting inaccu-
racies. However, the predictor was adapted at each sam-
pling period so as to improve predictions. For the off-line 
identification was used input-output data generated by 
pulses of random amplitude and duration. Duration and 
amplitude of the pulses must be chosen carefully to produce 
accurate identification. We have used amplitudes in range 
<0; 100> cm3/s and duration from 1s to 50s. 

The MFFNN with 1 hidden layer was chosen the as a com-
parative method for prediction. The structure was 10→8→1. 
In the hidden layer the hyperbolic tangent function was used 
while in the output layer the linear transfer function was 
utilised. Because of the long training times of multilayer 
feed-forward neural networks, the off-line identification was 
necessary. Training data were same as for ADALINE and 
Levenberg-Marquart method was utilised as the training 
algorithm. 

6. Simulations and results  

Simulations were done for two types of predictor – adaptive 
linear network and multilayer feed-forward neural network. 
As can be seen from figure 6, the Band-Limited White Noise 
block was included to find out the behaviour without noise 
and while noise is pre-sent.  

The gain of noise was set to 0 and 0.5 respectively. The 
sampling period of Simulink was set to 1s. 

Both predictors were tested in control of the Simulink model 
of the two interconnected cylindrical tanks system in case of 
no noise and with presence of noise. In the following text 
are the simulations denoted as ADALINE1 (without noise), 
ADALINE2 (with noise), MFFNN1 (without noise) and 
MFFNN2 (with noise). 
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Due to constraints and nonlinear nature of predictors nu-
merical optimization of the MPC criterion was necessary. 
The controller used constrained quasi-Newton method from 
Matlab Optimization Toolbox as a nonlinear optimization 
algorithm. 

TDL blocks in the figure 6 represent so called Tapped Delay 
Line which stores five recent values of the signals. This 
block is necessary because ANN uses five recent values of 
system input and output. Example of the TDL is depicted in 
figure 7. 
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Fig.7 TDL block from the Simulink control loop  

 

The parameters of the controller that used ADALINE based 
predictor were set in the following way: λ = 1, ρ = 0.2, N1 =1, 
N2 = 7, Nu = 5 in case of no noise (ADALINE1) and λ = 1, ρ 
= 0.8, N1 =1, N2 = 7, Nu = 5 in case of influence of noise 
(ADALINE2).  

Simulation results are presented in figures 8 and 9. 

The parameters of the controller that used MFFNN based 
predictor were set as follows: λ = 1, ρ = 5, N1 = 1, N2 = 10, 
Nu = 5 in case of no noise (MFFNN1) and λ = 1, ρ = 1, N1 = 
1, N2 = 5, Nu = 5 in case of influence of noise (MFFNN2).  

Simulation results are depicted in figures 10 and 11. 
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Fig.8 Simulation results of ADALINE1  

(green – system output, blue –  
reference value, red - control  
signal) 
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Fig.9 Simulation results of ADALINE2  

(green – system output, blue –  
reference value, red - control  
signal, yellow - noise) 

0 1 2 3 4 5 6

x 104

0

10

20

30

40

50

60

70

80

time [s]

y 
[c

m
], 

yr
[c

m
], 

u[
cm

3/
s]

u
yr
u

 
Fig.10 Simulation results of MFFNN1  

(green – system output, blue –  
reference value, red - control  
signal) 
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Fig.11 Simulation results of MFFNN2  

(green – system output, blue –  
reference value, red - control  
signal, yellow - noise) 

 

In order to compare results of both controllers (predictors) 
we used two quadratic criterions: 

( ) ( ) 2
1 r

k
S y k y k= ⎡ − ⎤⎣ ⎦∑   (14) 
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( ) ( ) ( ) ( )2 2
2 1r

k k
S y k y k u k u kϕ= ⎡ − ⎤ + ⋅ ⎡ − − ⎤⎣ ⎦ ⎣ ⎦∑ ∑   (15) 

First criterion is based on control errors and represents the 
tracking performance of the controller. While the second 
criterion contains not only the control errors, but also the 
speed of control signal changes. Thus, it also represents the 
controller demands on the actuators. The ϕ parameter was 
se to 10000. The computed values of both criterions are 
shown in the table 1. 

 
Simulation S1 S2 
ADALINE1 355177 400770 
ADALINE2 912170 949451 
MFFNN1 456429 480985 
MFFNN2 1045880 1061729 

Tab.1 Comparison of the simulations results 

7. Discussion  

As can be seen from figures 8 to 11, the usage of ADALINE 
as a predictor in model predictive control is possible for both 
cases - control without noise and with noise, despite the 
predictor was trained for data without noise. Due to influ-
ence of noise, the parameter ρ had to be increased to re-
duce the jittering of control actions. However, oscillations of 
output value could not be removed because of placement of 
noise at the output of the controlled system. Comparative 
method – MFFNN based predictor, provides similar results, 
however it has significantly longer training time (Off-line 
training of ADALINE lasted 0.1s but MFFNN took more than 
10 minutes). Therefore, the simulation proved that simple 
one-neuron network with linear transfer function is able to 
predict the nonlinear system output with moderate devia-
tions. Moreover, it was shown that the ADALINE can be 
used for sufficient predictive control of this kind of systems. 

Conclusion  

The main advantages of ADALINE are small memory re-
quirements, fast training and simple usage. As a result of 
short training time ADALINE can be easily adapted on-line 
which increases the accuracy of control. Of course, the 
presented method has also disadvantages. The first draw-
back comes from the simplicity of ADALINE. Linear nature 
of ADALINE may result in not so exact predictions in com-
parison to predictions to be obtained from more complex 
ANN. On the other hand, MPC is quite tolerant to small 
predictor inaccuracy and on-line adaptation may also de-
crease the prediction error. The second disadvantage is the 
computational demands of optimization algorithm. 
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