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Abstract 
This paper basically follows [1], where the transfer function formalism in nonlinear 
control systems, both continuous and discrete-time, is discussed. Here, we demon-
strate how such a formalism can be adopted to design constrained nonlinear dis-
crete-time controller for a fluid tank system. The first step consists in finding appro-
priate nonlinear discrete-time description for a fluid tank system, which is, in general, 
a difficult task, as it involves solving nonlinear differential equations. Second, we 
design nonlinear discrete-time controllers which linearize closed loop, eliminate input 
disturbance and deal with the controller output constraint. Finally, all results are 
verified on a real fluid tank system. 
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Introduction  

Algebraic formalism in nonlinear control systems, both con-
tinuous [2] and discrete-time [3], shows great applicability in 
solving a number of control problems, like decompositions 
to canonical forms, feedback linearization, disturbance de-
coupling problem, to name a few possibilities. A power of 
such a formalism was recently extended by introducing 
transfer functions of nonlinear systems, see [4], [5] and [6] 
for special cases of continuous and, respectively, discrete-
time systems. An overview of such a formalism was given in 
[1]. So we refer the reader to that paper for detailed mathe-
matical background which we, to avoid duplicity, will leave 
out in this work. 

Transfer functions of nonlinear control systems, as defined 
in [4] and [6], show many properties we expect from transfer 
functions. One of them is the possibility to use transfer func-
tion algebra when combining systems in a series, a parallel 
or a feedback connection. In this paper, this feature is em-
ployed to design various nonlinear discrete-time controllers 
for a fluid tank system. In controller design we will be inter-
ested in controllers which satisfy linearity of the closed loop, 
eliminate an input disturbance and also deal with the con-
troller output constraint. 

1. Algebraic background 

Algebraic formalism for dealing with nonlinear discrete-time 
control systems was given in [4] and recently extended in [6] 
by introducing transfer functions of nonlinear discrete-time 
systems. Some former results concerning transfer functions 
are also due to [7]. Here, we just briefly review some neces-
sary facts and the reader is referred to [4], [6] for detailed 
technical constructions which are not found here.  

For the sake of simplicity we introduce following notation. 
For any variable )(tξ  we write only ξ  and for its time shift 

)1( +tξ  we use +ξ . 

Using this notation, nonlinear discrete-time control systems 
considered in this paper are objects of the form 
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where f and g are meromorphic functions, which we think of 
as elements of the quotient field κ  of the ring of analytic 
functions and x, u and y denote state, input and output to 
the system and are of appropriate dimensions.  

We suppose that (1) is generically submersive [3]. 

Define a difference vector space ε  of one-forms spanned 
over κ  by differentials of elements of κ  

};d{span κξξε κ ∈=  

Let σ  be a time shift operator which takes t to t + 1. Opera-
tor σ acts on κ and ε as follows 

+= ξξσ )(  
++= ξαξασ dd )(  

for any κξ ∈ and εξα ∈d . 

Operator σ  induces a skew polynomial ring ]0,;[ σκ z  in the 
indeterminates z with the usual addition and (non-
commutative) multiplication given by the commutation rule 

zz += ϕϕ  
for any κϕ ∈ . Hence, ]0,;[ σκ z represents the ring of linear 
shift operators which act over the vector space ε  [6]. That 
is, the shift operator σ on ε  induces the action 
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for any υ  in ε . For the sake of simplicity, the symbol * is 
often dropped. 
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Moreover, ]0,;[ σκ z  is a left Ore ring and can be therefore 
embedded to the non-commutative quotient field 0,;σκ z . 
After defining quotients of skew polynomials [6] transfer 
functions can be introduced. 

Given the nonlinear system (1) with m = 1 and p = 1. An 
element 0,;)( σκ zzF ∈  such that uzFy d)(d =  is said to be 
a transfer function of discrete-time nonlinear system (1). 

Transfer functions of nonlinear discrete-time systems have 
many properties we expect from transfer functions. For 
instance, one can easily introduce algebra of transfer func-
tions when combining systems in a series, parallel or feed-
back connection. Such a formalism will be used later in 
controller design.  

2. Nonlinear discrete-time model  
of the fluid tank system 

Properties of continuous-time systems are usually described 
by differential equations while for discrete-time systems we 
use difference equations. In case the systems are linear we 
can to advantage use Z transformation to find discrete-time 
models from continuous. However, if we deal with nonlinear 
systems, the situation is much more difficult to handle. Since 
to find nonlinear discrete-time description of continuous-time 
system one needs to solve nonlinear differential equations 
and then sample the solution by a sampling period T. Of 
course, this is usually impossible due to the nonlinear rela-
tions. Hence, in finding nonlinear discrete-time descriptions, 
one has to be satisfied only with approximations. This idea 
is employed to describe properties of a fluid tank system.  

Consider the fluid tank system described by the following 
continuous-time state-space representation 
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where x, A and c denote a level of a liquid, a tank area and 
a flow coefficient, respectively.  

Due to the nonlinear relations, we are not able to find any 
solution to (2). Hence, to find a nonlinear discrete-time 
model of (2) we use the following approximation 
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Clearly, we can think of t∆  as a sampling period T which 
implies that )()1()( txtxtx −+=∆ . That is 

T
xxx −

≈
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Hence, from (2) we get the following nonlinear discrete-time 
approximation 
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                                                           (3)  

Obviously, the less sampling period T we choose, the more 
accurate approximation we get. 

Now, the transfer function of (3) can be computed as 

x
x
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Fig.1 Transient responses: nonlinear discrete-time  

approximation of the fluid tank system  
with A=1, c=1 and T=0.5s 
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where 
A
TK =   and 

x
cTD

2
1−=  

3. Constrained discrete-time  
nonlinear controller 

In this section we use the discrete-time representation (3) 
and (4) of the fluid tank system and design nonlinear dis-
crete-time controller. Our aim is to design a controller, 
which: 
• satisfies a linear transfer function of the closed loop 
• eliminates an input disturbance 
• deals with a control signal constraint 

The requirement of the closed loop linearity can be satisfied 
by a feedback controller. This yields a feedback lineariza-
tion. If we want the closed loop dynamics to be determined 
by a time constant T1 we obtain regular static state feedback 

T
AxDxcTwDu ])1()1[( 11 −−+−=                                       (5) 

where w denotes the new input and 1/
1

TTeD −= . Under this 
feedback the input-output description of the closed loop is 
linear 

w
Dz
D

y d
1

d
1

1
−
−

=  

Evidently, to linearize the system, we did not need the intro-
duced transfer function formalisms. However, the situation is 
different in eliminating an input disturbance and dealing with 
a control signal constraint, where a use of transfer functions 
is unavoidable.  

To satisfy remaining design requirements we will consider 
control structure [8] depicted in Fig. 2. 
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Fig.2 Closed loop structure 

The input disturbance v is eliminated via the feedback filter 
K2 which tries to reconstruct v and subtracts it from control-
ler output. The block K1 only removes the impact of K2 while 
controlling the system (via the feedback linearization). It is 
worth noting that the entire control structure has the proper-
ties of a PI controller. An important difference consists in the 
fact that there is no problem with the wind-up effect, in con-
trast to the classical PI controller with the control signal 
constraint.  

Of course, the ideal filter 
)(

1)(2 zF
zK =  is not realizable. 

Hence, we use 
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where fTT
f e /−=λ  and Tf is a time constant which deter-

mines how fast the disturbance elimination will be.  

The transfer function (6) corresponds to the input-output 
difference equation 
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where 2Ku  and 2Ky denote input and output respectively to 
the filter.  

The realization (state-space description) can be found as 
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The filter )(1 zK  is linear system with the transfer function 
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3.1 Simulation results 

It is quite important to note that all controllers were designed 
using the nonlinear discrete-time approximation (3) of the 
fluid tank system (2). But as a matter of fact the continuous-
time system (2) is to be controlled. And since (3) is only its 
approximation, more or less accurate, the quality of the 
closed loop transient responses highly depends on the cho-
sen sampling period T. This is something which constitutes 
a fundamental difference with respect to the linear case and 
it is due to the fact that we were not able to find the discrete-
time model of the system (2), only its approximation.  

In simulations we used the system (2) with A=1, c=1. Time 
constants T1 and Tf which determine the dynamics of the 
control and of the disturbance elimination were chosen to be 

0.5s and 0.2s respectively. The control signal was constraint 
to the interval 2;0 . Transient responses for different sam-
pling periods T are depicted in Fig. 3 and Fig.4. 

Fig.3 System output. Disturbance step  
          from 0 to 0.5 in time 15s 

Fig.4 Controller output. Disturbance step  
          from 0 to 0.5 in time 5s 

4. Minimum-time controller 

Minimum-time controllers can be obtained quite easily from 
(5), (6) and (7) by requiring 01 →T  and 0→fT  which im-

plies that 01 →D   and 0→fλ . As a result we get the fol-
lowing regular static state feedback 

T
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and filters 
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The latter corresponds to the state-space realization 
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Such controllers represent in fact dead-beat controllers. We 
can easily check that 

v
z
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Of course, as we have a constrained control signal, tran-
sient responses will not take only one sampling interval, but 
spend a necessary time on the constraints. Simulations are 
depicted in Fig. 5 and Fig. 6. We use the same parameters 
but T1 and Tf, which are now zero. 

Fig.5 System output. Disturbance step  
          from 0 to 0.5 in time 15s 

Fig.6 Controller output. Disturbance step  
          from 0 to 0.5 in time 15s 

 

Another important thing to note is that after leaving the con-
straints the control signal does not immediately achieve the 
steady value, as it would in the case of a linear system. This 
is caused again by using the discrete-time approximation (3) 
of the system (2), as we were not able to find the discrete-
time model of the system (2).  

For the same reason, also here the quality of the closed 
loop transient responses highly depends on the chosen 
sampling period T. 

 

5. Real fluid tank system 

The construction of the real hydraulic system which is de-
picted in Fig. 7 is due to [9]. It enables us to control the 
three-tank cascade.  

 

 
Fig.7 Three-tank cascade 
 
The first step consists in the identification. We are interested 
in controlling the first tank. Identified parameters are as 
follows: A = 0.001m2, c = 0.0141. Fig. 8 depicts differences 
between the identified model and the real fluid tank system. 

 

 
Fig.8 Differences between model and the real system 
 
 
Note again that controllers were designed using the nonlin-
ear discrete-time approximation of the fluid tank system. But 
in fact the continuous-time system is to be controlled. 
Hence, the less sampling period T we choose, the better 
results we get. Obviously, this has a significant impact on 
the quality of the control of the real fluid tank system. 

 
Another important thing to note which is directly related to 
the control of the real system is the fact that when dealing 
with the minimum-time control the results will differ from the 
simulations, especially in the case of the controller output. 
This is caused by the controller which when detecting the 
difference between system output and its required value 
presses for its eliminating within one sampling interval. 
Clearly, this results in the maximum value of the controller 
output which is, however, constrained. Such a situation 
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happens almost permanently in all real processes, at least 
owing to the noise of measured signals, sensors, etc. 
Hence, the minimum-time controller will switch the pump on 
and off very frequently, depending on the chosen sampling 
period T. An additional filtering or a dead zone can be solu-
tions to the problem which is, however, out of scope of this 
paper. 
 
In the real fluid tank simulations we used the step of the 
required value from 0 m to 0.2 m at the beginning and from 
0.2 m to 0.1 m in time 100 s. The disturbance appeared in 
time 150 s. 
 

 
Fig.9 System output in minimum-time control  
          with T=0.25s  
 

 
Fig.10 Controller output in minimum-time control  
            with T=0.25s 
 
In the non-minimum-time control we used time constants 
T1 = 10 s and Tf = 4 s which characterize how fast the con-
trol and, respectively, the disturbance elimination will be. 
Here, we can see quite high quality of the control, the dis-
turbance elimination and the controller output as well. The 
difference between controller output of the model and of the 
real system is due to the nonlinear properties of the valve as 
well as to the viscosity of the pump. 
 
 

 
Fig.11 System output in non-minimum-time control  
            with T=0.25s 

 

 
Fig.12 Controller output in non-minimum-time  
            control with T=0.25s 
 

 
Fig.13 System output in non-minimum-time control  
            with T=1s 
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Fig.14 Controller output in non-minimum-time  
            control with T=1s 

Conclusions  

In this paper the transfer function formalism in nonlinear 
control systems was employed to design various types of 
nonlinear discrete-time controllers for the real fluid tank 
system. We focused our attention on the controllers which 
linearize the system, eliminate the input disturbance and 
deals with the control signal constraint. The results are, in 
principle, similar to the linear theory. However, the remark-
able difference is given by the fact that we are usually not 
able to find nonlinear discrete-time models of continuous-
time systems, due to the nonlinear relations in systems 
equations. This has major consequences. Mainly, that qual-
ity of the designed nonlinear discrete-time controllers highly 
depend on the chosen sampling period T, as was demon-
strated. All controllers, with various sampling periods, were 
implemented to control the real fluid tank system. We can 
conclude that to control the system satisfactorily the critical 
value of the sampling period T is about 1s. 
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