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Abstract 
Popularity of Model Predictive Control techniques is growing in recent years. It is an 
intuitive and general design method convenient for controlling of multivariable plants, 
systems with dead-times and it enables simple constraints handling and future refer-
ences. Authors deal with Generalized Predictive Control based on CARIMA process 
model. Control experiments with pilot plant are presented by considering the noise 
polynomial as a tuneable controller parameter. It is shown how the noise polynomial 
(data filter) improves the controller insensitivity against the high frequency uncertain-
ties – i.e. the measurement noise. 

Keywords: TITO control, generalized predictive control, CARIMA model, noise 
model, noise filtering 

Introduction 

Controlled processes in chemical industry are often multi-
variable systems with dead times and constraints. The con-
trol is not easy task under these conditions. Many control 
methods exist to deal with the individual problems and by an 
application they are usually combined together to get satis-
factory solution. The result is that some information are 
implemented by the control design, some are respected 
passively and some are ignored. Model Predictive Control 
(MPC) is an open methodology how to pose control design 
in time domain. The idea is to optimize dynamically future 
process behaviour by the minimization of a selected crite-
rion – to compute optimal future manipulated variables. 
Future controlled variables are computed from the process 
model and actual state as a response to the future manipu-
lated variables. Quadratic finite horizon multiobjective crite-
rion is often used – in the base form with the future control 
error and control movement penalization. At every sampling 
time all the computations are repeated with actual informa-
tion (about measured variables, disturbances and future set-
points) and the only first control action from the whole calcu-
lated future vector is applied – this is called as a “receding 
horizon strategy”. It is possible to consider the future set-
point, future or measurable disturbances and constraints 
quite easily. Necessary and key condition is ability to de-
scribe the process behaviour in some mathematical form 
(input-output, state-space, finite step response, finite im-
pulse response model,…). Using of different models (and 
consequently different mathematical apparatus) and criteri-
ons leads to wide range of control strategies. 

Generalized Predictive Control (GPC) is dealt in this paper. 
Controlled Auto-Regressive Integrated Moving Average 
(CARIMA) process model, finite horizon criterion with the 
future control error and control movement penalization are 
used. An analytical solution is possible in the case without 
constraints. In the general GPC case the process model 
contains noise model (coloured noise polynomial, polyno-
mial matrix in MIMO case). This polynomial can arise from 
the process identification – as a noise characteristic. Practi-
cal effect is that this polynomial acts as a data filter and it is 
often used as a one of the controller tuneable parameters. 
This polynomial does not change the set-point tracking but 
decreases controller sensitivity to the measurement noise 

and model mismatch (e.g. by nonlinear or time variant proc-
esses). It is possible to use polynomial methods (spectral 
factorization) and to design optimal filter which has identical 
behaviour as a Kalman filter for state-space model. The aim 
of this paper is not the design of this polynomial but to dem-
onstrate how the choice of different polynomials and proc-
ess models influence the real control if controlled variables 
are burden with a measurement noise. 

1. Generalized Predictive Control 

Only the key assumptions and conclusions of controller 
design will be stated. GPC methodology and algorithms are 
published for example in [1], [2], [3], [4]. We consider 
CARIMA model for a ny-output and nu-input multivariable 
process in the form 
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where  A(z-1) and C(z-1) are ny × ny monic polynomial matri-
ces and B(z-1) is an ny × nu polynomial matrix. The operator 
∆  is defined as 11 −−=∆ z . The variables y(k), u(k), e(k) are 
ny × 1 output vector, nu × 1 input vector and ny × 1 noise vec-
tor respectively. The noise vector is supposed to be white 
noise with zero mean. The C(z-1) polynomial matrix which is 
used in the prediction model is denoted by T(z-1) further on 
and it is called robustness filter in GPC terminology [1]. 

Following finite horizon quadratic criterion is considered 
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where ( )kjk |ˆ +y  is an optimum j-step ahead prediction of 
the system output, N1 and N2 are the minimum and maxi-
mum prediction horizon and yr(k+j) is a future set-point for 
the controlled variables. Nu is the control horizon (after the 
first Nu control moves the control signal is kept constant). R 
and Q are positive definite weighting matrixes. 
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The optimum j-step ahead prediction of the system output 
can be written in matrix form as 
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where the first term is so called forced and the second term 
free response of the system. The vector ∆UNu is vector of 
future control movements to be calculated, the matrices 
GN12u, G’N12 and FN12 are evaluated from the process model 
and vectors Up and Yp are vectors of past process inputs 
and outputs 
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Criterion (2) in matrix form is 
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where ( ) ( )QQQRRR ,,,,, KK diagdiag == . 

If there are no constraints the optimum can be expressed as 
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Receding strategy means that only the first element of the 
sequence ∆UNu is actually sent to the process and the con-
trol action is then 

( ) ( )1212, NNrk fYKu −=∆  (7) 

where K are the first nu rows of matrix L and Yr,N2 are the 
future set-points 
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2. Controlled process 

Control experiments with laboratory hydraulic-pneumatic 
system (HPS - see Fig 1) are presented to demonstrate the 
effect of polynomial matrix T(z-1) in “real conditions” – in the 
case of measurement noise, disturbances, model mismatch 
and nonlinearity. 

 
Fig.1 Hydraulic-pneumatic system 

 

Laboratory model HPS is described more in detail e.g. in [6]. 
Water is pumped to the high tanks and flows out though 
orifices in the tanks bottom to the low tanks and then to the 
reservoir. Pneumatic volumes above the water levels are 
closed from atmosphere and connected between two adja-
cent tanks. Air tanks are connected to the air pipes for in-
creasing the capacity - dynamics. Orifices serving as a lim-
ited connection with the atmosphere are in the air tanks 
bottom. That way an atypical dynamical system behavior is 
obtained. Change in one pump flow rate originates water 
level change in the same section and also air pressure 
change. This pressure influences water level in second 
section too. Pressure in air volume is gradually equalized 
with the atmospheric pressure (is going out to the atmos-
phere). Then the cross coupling has character as a dynami-
cal derivative term with zero steady-state gain. 

Levels in low water tanks are measured indirectly by the 
difference pressure sensors. Output signals from the pres-
sure sensors yL, yR are electric voltage signals in range from 
0 to 10 V. The water flow rates are controlled by supply 
voltage of the pumps. The process input signals uL, uR are 
voltage signals in range from 0 to 10 V which are trans-
formed to the range from 4 to 10 V and gained in pump 
control unit. 

3. Process model 

Nonlinear model of HPS is obtained by an application of 
mathematical-physical analysis – physical laws by respect-
ing the system construction [5]. The high air tank is opened 
to the atmosphere by all experiments and the orifice is pla-
ced only in the low air tank. This configuration has advan-
tage that the pump static characteristics are only functions 
of the pump supply voltage. Interesting feature of this con-
figuration for the control is that the levels in high water tanks 
tend to overflow or flow out. 

Nonlinear model is analytically linearized – state-space and 
input-output linear process models are obtained. Unknown 
static parameters of pumps, water tanks and pressure sen-
sors models are estimated by a numerical optimization met-
hod from the measured static characteristics. It is not possi-
ble to estimate the air discharge coefficient for the orifice in 
the low air tank from static data. Dynamical responses of the 
water levels in low water tanks are measured and the air 
discharge coefficient is estimated by the use of nonlinear 
model and numerical optimization method. 

Parameters of input-output model are evaluated in the mid-
dle of the HPS working region. The linearization point is in 
the Table 1 - the outputs are calculated from the nonlinear 
model for given inputs. 

 
Position u [V] y [V] 
Left - L 5,0 5,6 
Right - R 5,0 5,7 

Tab.1 Working point 

The input-output model of HPS (in the following text called 
as a “full model”) is 
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Rather complicated nonlinear model is obtained by the mat-
hematical-physical analysis. Also model (8) has quite high 
order (corresponding to the number of process capacities). 

Therefore another simpler model is identified from the mea-
sured step responses (Fig. 2 – the measured step re-
sponses are plotted with the solid line, the simulated with 
the dotted one) – this model is in the following text called as 
a “simplified model”. 
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Fig.2 Step responses – simplified model 

4. Control experiments 

Following control experiment is considered: experiment 
starts with the set-points voltages for both lower tanks water 
levels 4 V, in time 10 minutes the set-point for the left water 
level is stepwise changed to 6 V and kept constant till the 
end of the experiment and identical set-point change is 
realized for the right water level in time 20 minutes (see e.g. 
Fig. 5). 

GPC parameters are listed in the Table 2. Process model 
with noise polynomial matrix T(z-1) is used by the predictive 
controller (Coloured noise GPC – polynomial matrix T(z-1) is 
considered as a design parameter – as a filter). Three poly-
nomial matrices T(z-1) are tested – diagonal polynomial 
matrices with diagonal elements  T = 1 (special case - white 
noise GPC), T = 1-0.8z-1 and T = (1-0.8z-1)2. Controllers with 
two process models are studied – with model arisen from 
the linearization of mathematical-physical nonlinear model – 
full model (8) and with a model estimated from the step 
responses - simplified model (9). 
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Tab.2 GPC parameters 

Two criteria of control quality are evaluated by all experi-
ments – sum of absolute control movements for manipu-
lated variable Ku and absolute control error area for con-
trolled variable Ky (10). Both values are referred to the 
experiment time duration (N.TS). Criteria are analyzed for 
both set-point changes separately as for two control experi-
ments and displayed in the figures. 
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Steady-state process output is measured (Fig. 3) - output of 
the pressure sensors yL and yR, input signal was kept con-
stant uL = uR = 5 V and standard deviation of the signal is 
evaluated (Table 3). 
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Fig.3 Measured steady-state process output 

 
 Output signal yL Output signal yR 
σ 0.0032 V 0.0045 V 

Tab.3 Noise “and disturbance” standard deviation 

Nonlinear model [5] is controlled in all simulated control 
experiments. To emulate the real process behaviour addi-
tive noises n are added to the model outputs (pseudo-
random numbers from range V0125.0± ) and load distur-
bances d are simulated (noises with random period 0-200 s 
and amplitudes - pseudo-random numbers from range 

V1.0± ).

 
Fig.4 Nonlinear model with noise and disturbance 

Nonlinear model 
u y 

d n 
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4.1 GPC based on full model 

Simulated control experiment without noise and disturbance 
for polynomial T = 1 (white noise GPC) is shown on Fig. 5. 
Simulated control experiments with noise and disturbance 
and polynomials T = 1, T = 1-0,8z-1 and T = (1-0,8z-1)2 re-
spectively are plotted on Fig. 6, 7 and 8. Real control ex-
periment for polynomial T = (1-0,8z-1)2 is shown on Fig. 9. 
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Fig.5 Simulated control without noise – full 

prediction model, T = 1 
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Fig.6 Simulated control with noise – full 

prediction model, T = 1 

 

 

 

 

 

 

 

 

 

 

 
Fig.7 Simulated control with noise – full 

prediction model, T = 1-0,8z-1 
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Fig.8 Simulated control with noise – full 

prediction model, T = (1-0,8z-1)2 
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Fig.9 Real control – full prediction model, 

T = (1-0,8z-1)2 

4.2 GPC based on simplified model 

Simulated control experiment without noise and disturbance 
and for polynomial T = 1 (white noise GPC) is shown on Fig. 
10. Simulated control experiments with noise and distur-
bance and polynomials T = 1, T = 1-0,8z-1 and T = (1-0,8z-

1)2 respectively are plotted on Fig. 11, 12 and 13. Real con-
trol experiment for polynomial T = 1 is shown on Fig. 14. 
The real control provides relatively good control perform-
ance even without polynomial filter (the controller is less 
sensitive to the measurement noise than the one based on 
the full model). 
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Fig.10 Simulated control without noise  

– simplified prediction model, T = 1 
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Fig.11 Simulated control with noise  

– simplified prediction model, T = 1 
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Fig.12 Simulated control with noise  

– simplified prediction model, T = 1-0,8z-1 
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Fig.13 Simulated control with noise  

– simplified prediction model, T = (1-0,8z-1)2 
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Fig.14 Real control – simplified prediction model, 

T = 1 

Conclusion 

Control technique “Coloured noise Generalized Predictive 
Control” is treated in the paper – process model includes 
noise model - polynomial matrix   T(z-1) differs from I. Simu-
lated and real experiments with hydraulic-pneumatic system 
(laboratory plant) are shown to demonstrate the effect of 
filter polynomial in the case of measurement noise pres-
ence. Two different models are used by GPC controller – 
“full” arising from linearization of nonlinear mathematical-
physical model and “simplified” as an approximation of 
measured step responses. Control with full model is much 
more sensitive to the measurement noise than with the 
simplified model in case of white noise GPC (case without 
noise model, T = 1) – compare Fig. 6 and 11. The disadvan-
tage of simplified model is that even in the case without 
noise (simulated experiment) the controlled variable is 
slightly oscillating – compare Fig. 5 and 10. This may be 
caused by the model mismatch or nonlinearity of the proc-
ess. The effect of filter polynomial is clearly seen from Fig. 
6, 7 and 8 – the manipulated variable is much smoother for 
higher filter order. The disadvantage of using the filter would 
be slowing down the disturbance rejection – in our case 
there is no provable relation with the criterion Ky. 

Real experiments give very similar results for full model with 
T = (1-0,8z-1)2 and simplified model with T = 1 (see Fig. 9 
and 14). Advantage of the mathematical-physical model is 
that we dispose with the nonlinear state-space model, the 
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states have physical meaning and we can evaluate the 
linear model in different working points. Next profit of this 
model type is that it opens nature way for nonlinear control, 
state-constrained control or different types of optimisations. 
The disadvantage is rather time and information consuming 
approach to get this model and to design the controller. On 
the other hand model from experimental identification is 
simple and fast to obtain and in our case we can fulfil the 
control demands similar as with the full model and the con-
troller is less sensitive to the measurement noise. 
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