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Abstract 
This paper deals with real-time implementation of model predictive control techniqu-
es to a laboratory servo engine. To cope with the nonlinear behavior of the plant, the 
piecewise affine (PWA) modelling framework is adopted. It is shown that PWA mo-
dels are especially well suited to describe systems with deadzone-type of nonlineari-
ties. Subsequently we show two approaches to design an MPC controller. First 
scheme is based on solving an optimization problem of finite size, while the second 
approach yields a control law which drives the states of the plant to respective refe-
rences in minimum time. To address the issue of real-time applicability of the obtai-
ned controllers we propose to use the concept of parametric programming.   
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Introduction 

Control of systems which express nonlinear behavior is a 
long standing problem both in control theory and practice. 
Several approaches can be adopted to design control laws 
for such systems, ranging from application of neural ne-
tworks (see e.g. [12]), through adaptive control techniqu-
es [15], up to classical PID/LQ control theory where the 
nonlinearities are approximated using linearization techni-
ques [14]. The problem gets more complicated if certain 
process constraints, such as limits on manipulated or output 
variables, have to be respected by the control policy. It is 
without doubt that Model Predictive Control (MPC) [11] is 
one of the most efficient control techniques when constraint 
satisfaction and optimal performance is required. The MPC 
approach, in its most general form, allows to use almost 
arbitrary prediction models, including nonlinear [1], [9] or 
hybrid [2] models. Contrary to classical PID or LQR control-
lers, the MPC strategy naturally incorporates the process 
constraints such that the manipulated inputs generated by 
the scheme never violate safety limits.  

MPC is an optimization-based strategy in which the values 
of the manipulated variables are decided such that certain 
performance criterion is minimized (or maximized). This 
allows one to incorporate e.g. economical aspects directly 
into the control design. One drawback of the MPC approach 
is that the optimization problem has to be solved repetitively 
at each sampling instance for a given value of the measured 
initial condition. Size and complexity of the optimization 
therefore significantly limit the minimal admissible sampling 
time of the plant. To address this issue and to allow real-
time implementation of MPC to processes with sampling 
times in order of milli- and micro-seconds, the concept of 
parametric solutions to MPC problems has been proposed 
by [3]. In this approach the optimization problem is solved 
for all possible initial conditions which satisfy given constra-
ints. The solution takes a form of a look-up table, which can 

be evaluated in real-time using a simple set-membership 
test. The test can be implemented1 as a sequence of matrix 
multiplications and logical comparisons  

Even though the concept of MPC can be coupled with a 
nonlinear model of the plant dynamics, the resulting nonli-
near optimization problem is often very difficult to solve to a 
global minimum in admissible time. Therefore the concept of 
hybrid systems [2] has been proposed to derive simpler 
models which approximate the nonlinearities with sufficient 
precision. One possible way is to perform multiple lineariza-
tions around different operating points. Each such linearized 
model is then valid in a domain whose boundaries are line-
ar. Using simple rules from propositional logic it can be 
shown that the model can be described mathematically by a 
set of inequalities involving continuous and discrete (boole-
an) variables. A particular mathematical representation, 
commonly referred to as the piecewise affine (PWA) model-
ling framework, is discussed in this paper.  

In the sequel we show how to derive a suitable PWA model 
of a plant which involves deadzone-type of nonlinearities. 
Specifically, we investigate a real servo engine device, 
which represents a mechanism for operating valves in pi-
pes. As will be seen later, the PWA model describes the real 
behavior of the plant with a great precision.  

Once the PWA model of the plant is available, we propose 
to solve the MPC problem parametrically in order to obtain a 
feedback law which satisfies control design requirements, 
such as constraint satisfaction or certain performance crite-
ria. One of them being a need for a fast (and ideally the 
fastest possible) transition from one steady-state to an a-
nother. First we investigate the case where an optimal con-
trol problem formulated over a finite prediction horizon is 
solved parametrically. However such approach, due to its 
nature, cannot guarantee that the transition from one set-

                                                 
1The implementation can be further simplified using advanced search strate-
gies, such as binary search trees of [13]. 
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point to an another will be performed as quickly as the con-
straints and the dynamics permit. Therefore we adopt the 
concept of minimum-time control [7]. In such scheme the 
states of the plant are forced to move to a prescribed termi-
nal set around the origin in the least possible number of 
steps, while respecting constraints on input and state va-
riables. There is, however, little known about how to synthe-
size a minimum-time controller for problems other than 
regulation towards the origin. The main contribution of this 
paper is therefore an extension of the minimum-time princip-
le to cases where the reference signal is time-varying.  

Description of the Physical Setup 

The laboratory servo engine is a mechanical device which 
represents a valve opening mechanism. It consist of a rota-
tional flywheel attached to an electric engine. The manipula-
ted variable is a voltage ranging from -15V to +15V genera-
ted by an actuator, which drives the rotation of the flywheel 
counterclockwise (when negative voltage is applied) or in 
the opposite direction (positive voltage). The angular veloci-
ty of the flywheel is the output signal which can be measu-
red. The flywheel is connected to a circular pointer which 
indicates the position of the valve. The position of the wheel 
is the secondary output which ranges from the position “fully 
open” (0 degrees) to “fully closed” (360 degrees). A front 
view of the servo engine is illustrated in Fig. 1. Notice the 
two circular pointers with red triangles in the foreground of 
the two discs. The left one is the position indicator and the 
right one represents the setpoint which can be manipulated 
manually. Under the left pointer there is a magnetic brake 
whose force can be adjusted by turning the red colored 
switch. The brake is considered to be an external disturban-
ce.   

  
Fig. 1 Front view of the laboratory servo engine. 

The laboratory servo engine is connected to a personal 
computer via three devices: an actuator, a transducer and 
the connector CP1102. The devices actually convert the 
operating range of the dSPACE input-output card (-10V, 
+10V) to the actuator voltage range (-15V, +15V). MAT-
LAB’s Real Time Workshop (RTW) serves as a tool for 
implementing the control policy.  

Hybrid Model of the Servo Engine 

Theoretical background 

The mathematical model of the servo engine originates from 
the second Kirchhoff’s law of preservation of the current in a 
knot and from the inertia conservation law. The voltage 
generated in the servo engine u  is given by  

iUt
iLRiu ++=

d
d  (1) 

where i  is the current in the solenoid, R  denotes resistan-
ce, L  inductance and iU  is an inducted voltage. The induc-
ted voltage iU  depends linearly on the velocity of the flyw-
heel, i.e. ωCUi =  where C  is a constant and ω  denotes 
the angular velocity of the flywheel. The generated torque 
M  is given by  

t
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with sM  denoting the load needed at start and J  denotes 
the inertia of the flywheel. Using the linear relation between 
the torque and current CiM =  we end up with a system 
model described by following two equations:  
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By plugging (4) into (3), the model can be transformed into 
an ordinary linear differential equation between the input 
voltage u  and the measured output ω  as  

22
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where ω&  denotes the time derivative of the angular velocity.  

 
Fig. 2 Graphical illustration of a deadzone in the servo 

engine 

The constant term on the right hand side of (5) contains an 
unknown parameter sM  which only influences the dyna-
mics if the speed is zero. It represents the initial load of the 
solenoid and can be neglected when the flywheel cruises at 
a nonzero speed. This phenomenon is known in process 
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control as a nonlinear deadzone behavior. Without loss of 
generality we shall rewrite the equation (5) to a general form  

KuTTTT =+++ ωωω &&& )( 2121  (6) 

with time constants 1T , 2T  and a gain K . In the sequel we 
will denote by v  the measurement (in volts) of the angular 
velocity ω .  

The actually applied input is now denoted as pu  and its 
relation with the voltage u  is modelled as given in [5] by  
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where dm  is the slope, and c  and vε  are the ranges of the 
deadzone. The dependence (7) is graphically depicted in 
Fig. 2.   

Piecewise Affine Models 

PWA systems represent a powerful modelling framework to 
describe the behavior of nonlinear systems by multiple line-
arizations at different operating points. Such description can 
be efficiently integrated into model predictive control strate-
gies by introducing logical variables [2]. In the sequel a brief 
overview of a PWA model will be given.  

Consider the class of linear hybrid systems which can take 
the discretized form  
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where n
kx R∈  is the system state, m

ku R∈  is the manipu-
lated input, and k  denotes a sampling instant. Furthermore, 

i
Dn
i DD 1== U  denotes the domain of PWAf , which is a no-

nempty compact set consisting of a finite number of convex 
polytopes in the joint ux −  space. Formally iD  can be 
defined by  
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where x
iG , u

iG , 0
iG  are constant matrices of suitable di-

mensions specifying the borders of the i th region. Notice 
that state and input constraints can directly be incorporated 
into (9).  

PWA  Model of the Servo Engine 

The motivation to use PWA systems to model the servo 
engine device stems from presence of the deadzone des-
cription, as given by (7). In the previous work of [8] the effect 
of the deadzone was neglected, since only initial conditions 
excluding zero starting velocity have been considered. Ho-
wever if one wants to design a control law which properly 
operates the plant even if it starts from the rest (i.e. 00 =v ), 
an appropriate model of the deadzone is of imminent impor-
tance.  

The deadzone description (7) can be straightforwardly mo-
delled as a PWA system of the form (8) with three modes:  
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Here c  and vε  denote the breakpoints of the deadzone. 
The state vector [ ]Tkykvkx =  is composed of the angular 
velocity of the flywheel and its position, respectively. The 
numerical values of the matrices describing the state-space 
dynamics kBukAxkx +=+1  can be either obtained directly 
from (6), or derived from an identified model of the plant. 
The latter approach has been used by [8], where the system 
behavior has been identified as a first-order system  

KuvvT =+&  (11) 

with the time constant s7057.6=T  and the gain  
1271.0=K . Values of A  and B  are then calculated by 

discretizing (11) using the sampling time s7.0=sT  

Notice that the PWA description (10) is defined over a non-
convex domain. In order to convert the model into a form 
where each mode is valid over a convex region, the non-
convex domains vv ε≥||  and cu ≥||  each have to be split in 
two parts. The resulting PWA model is then given by follo-
wing 5 modes:  
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The manipulated voltage is supposed to be constrained by 
1010 ≤≤− u , while the angular velocity of the flywheel has 

to satisfy 5.15.1 ≤≤− v . 

Model Validation 

A test scenario was used to validate the PWA model (12) 
versus measured data. By imposing a known control profile, 
output from the model was compared with the data collected 
from the device. As can be seen from Figure 3, the model 
approximates the real behavior of the plant with sufficient 
accuracy. Successful modelling of the deadzone is clearly 
seen from the first 6 seconds of the comparison. Since vol-
tage inputs ranging from -1V to +1V have been applied 
during that period, the deadzone forbids the flywheel to start 
moving. This is correctly captured by the model. Once the 
input voltage exceeds deadzone threshold, the model cor-
rectly switches to a different operating mode where the input 
starts to influence the angular velocity of the flywheel.   

Model Predictive Control 

In this section we propose two MPC strategies which can be 
used to control an electrical servo engine described in the 
previous sections. The first approach is based on optimizing 
the sequence of manipulated variables over a finite predic-
tion horizon, while the second scheme is based on the so-
called minimum-time principle. Although the minimum-time 
case has already been covered extensively e.g. by [7], the 
contribution of this section is a novel way of synthesis of 
minimum-time controllers which drive the system states to 
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prescribed time-varying reference trajectories other than the 
origin.  

  
Fig. 3 Comparison between the model behavior and 

measured signals. 

Constrained Finite Time Optimal Control 

The Constrained Finite Time Optimal Control problem can 
be formulated as to find an admissible solution to   
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where the index p  denotes a linear norm (either 1=p  or 
∞=p ). R  and Q   represent the weighting matrices which 

penalize, respectively, the deviation of the input and state 
signals from given references. We will assume 0=refu  
throughout the rest of the paper2. The PWA model of the 
controlled system is incorporated as the equality constra-
in (13). The constraints X  and U  are assumed to be com-
pact polyhedral sets containing refx  and refu  in their res-
pective interiors.  

If the initial state 0x  as well as the value of the reference 
signal refx  are both known, the optimization problem (13) 
can be formulated and solved as a Mixed Integer Linear 
Program (MILP). The integer variables are used to model 
the different modes of the PWA model. However it is well 
known that MILP problems are, in general, NP-hard [6]. 
Even though efficient branch-and-bound algorithms exist, 
the complexity of the optimization problem can easily be 
prohibitive for real-time applications due to time constraints. 
Specifically, in order to apply the MPC principle to our servo 
engine plant, the optimization problem has to solved within 
the given sampling time of 0.7 seconds. To address this 
issue, [3] proposed to solve the optimization problem para-
metrically for all possible values of the initial condition 0x  

                                                 
2This is a reasonable assumption for position control if the model description 

already includes an integrator. If it were not the case, one could optimize over 

kkk uuu −= +∆ 1  instead of ku  in order to eliminate the steady-state offset, 

and use 0=∆ refu  to indicate that the manipulated variable should be kept 

constant once the states converged to the reference. 

which satisfy the constraints. The advantage of the paramet-
ric solutions is that the optimal control input can be obtained 
in real-time by simply evaluating a look-up table.  

Theorem 1. (Solution to CFTOC [4]) The solution to the 
optimal control problem (13) with { }∞∈ ,1p  and a linear 
state-update in (13) is a time-varying piecewise affine state 
feedback control law of the form  

k
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and the optimal value function is a time-varying piecewise 
affine function of the state  
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where { }0| i
k
i

nk
i PxPRxP ≤∈=  is a polyhedral partition of 

the set kX  of feasible states kx  at time k  with 
1,,0 −= Nk K .  

The case where the state-update equation in (13) is driven 
by a PWA model of the form (12) has also been handled 
by [4] where it is shown that the parametric solution to (13) 
also takes a form of a PWA feedback law (14) defined over 
a (possibly non-convex) polyhedral domain. Theorem 1 
therefore provides a powerful result as it suggests that MPC 
problems can be solved parametrically and implemented in 
real-time by a simple table look-up. The table is parameteri-
zed by the 0x  parameter.  

However if the reference signal refx  is wanted to be time-
varying, one has to extend the vector of parameters to in-
clude this quantity. This can be done easily by augmenting 
the state vector as  
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and changing the penalty matrix Q  to penalize the differen-
ce refk xx − , i.e.  
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With this augmentation the optimal control problem (4.1) can 
be rewritten as   
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To sum up, the parametric solution to the CFTOC prob-
lem (18) is a look-up table parameterized by the initial condi-
tion 0x  and the reference signal refx . The table can be 
calculated efficiently using e.g. the Multi-Parametric Tool-
box [10]. Performance of the MPC scheme can be tuned by 
appropriately adjusting the weighting matrices Q  and R , 
and by a suitable choice of the prediction horizon N . Ho-
wever there is no a-priori guarantee that the control policy 
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will drive the state of the plant to the reference signal as 
quickly as possible. To achieve such goal, we use the con-
cept of minimum-time control.  

Minimum-time Control 

The task of designing a control law which drives system 
states to a desired target set in minimum-time has been 
addressed by [7]. The authors propose an algorithm which 
first designs a control invariant set around the origin and 
subsequently iteratively constructs the control law which 
steers the system to such set in a minimal number of steps. 
A drawback of such approach stems from the fact that it can 
only be used for regulation problems, i.e. for tasks of driving 
the system states to the origin. However in applications like 
the one considered here, we require a subset of states to 
converge to non-zero time-varying reference signals.  

Therefore we propose an alternative way of computing the 
initial target set, while the rest of the algorithm remains 
unchanged. The target set has to be designed such that 
once states x  are contained in such set, there is a control 
law which drives them to the reference refx  in a finite num-
ber of steps. Moreover, the target set has to be designed 
such that it satisfies the set invariance property.  

Definition 1. (Control Invariant Set) A control invariant set 
ψ  is the set of states for which there exist control inputs 

Uuk ∈  such that if ψ∈0x , then all subsequent state upda-
tes ),(1 kkPWAk uxfx =+  also belong to the set ψ  for 

∞= ,,0 Kk .  

To find a suitable target set and a control law active in such 
set which brings system states to desired trajectories in a 
fixed number of steps, we suggest to solve the following 
feasibility problem:   
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Notice that (20) is in fact a constraint on Tkx +
~ , since it can 

be written as [ ] 0~ =− +TkxII  with [ ]TrefTkTk xxx ++ =~ . If 
the problem (20) is solved parametrically, according to The-
orem 1 one obtains the feasible set Ω  of parameters 0

~x  
which satisfy given constraints. The set takes a form of a 
(possibly non-convex) union of finite number of convex 
polytopes. In addition, the control law )~(xfu =  will take a 
form of the PWA state-feedback as in (14). The equality 
constraint (20) assures that the control law will be in a form 
such that once the state resides in the set Ω , it will be stee-
red to the respective reference in, at most, T  steps. There-
fore the obtained control law can be viewed as a dead-beat 
controller for the class of hybrid systems. Notice that, ideal-
ly, one would choose 1=T  in (20). However, if the process 
dynamics (20) includes transport delays or unstable zeros, it 
is necessary to choose 1>T  in order for (20) to have a 
feasible, non-empty solution.  

Also notice that the set Ω  of the states for which (20) is 
feasible satisfies the control invariance property by con-
struction. This is due to the fact that every state which starts 

from Ω  is forced to remain in the set by the equality con-
straint (20).  

Once the control invariant set Ω  is available, it can be used 
to design a minimum-time controller. The control law is 
constructed iteratively, where at each step the following 
optimization problem for prediction horizon 1=N  is solved 
parametrically:   
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with (21) representing a terminal set constraint. The mini-
mum-time algorithm of [7] can now be stated as follows:  

1. Solve the problem (20) parametrically and denote by Ω  
the set of states for which the problem is feasible.  

2. Set the iteration counter 0=i  and set Ω=iS .  
3. Set iset ST =  in (21) and solve (21) parametrically by 

considering [ ]Trefxxx =~  as the parameter. Denote 
the feasible set of the problem (34) by 1+iS .  

4. If ii SS =+1 , stop, the algorithm has converged.  
5. Increase i  by 1 and jump back to Step 3.  

At every run of Step 3 of the algorithm above, a control law 
of the form ii GxFu += ~  is generated according to Theo-
rem 1. Since the dynamics in (21) is hybrid, the feasible set  

iii PS U=  will be a non-convex union of finite number of 
convex polytopes. The set is then used at the next iteration 
as a new target set constraint. The algorithm terminates if at 
two subsequent iterations no new states have been added 
to iS . Since one-step problems are solved at each step, the 
controller guarantees that all states will enter the initial ter-
minal set Ω  in the least possible number of steps. Subse-
quently, once the states arrive to the set Ω , the control laws 
which have been obtained as a solution to (20) will drive 
them to the respective reference in a dead-beat fashion.  

Experimental Results 

The servo engine is controlled via a dSPACE I/O card and 
the control algorithm is implemented using Matlab’s Real 
Time Workshop. The feedback laws in the form of a look-up 
table are exported to C-code along with a policy which sear-
ches the table for a region which contains the actual state 
measurements. The parametric solutions have been obtai-
ned by the Multi-Parametric Toolbox [10], which is also able 
to create a respective C-code representation of the control-
ler logic and data in a user-friendly way. The optimal control 
policy as well as the minimum-time controller of have been 
investigated in real-time experiments.  

CFTOC 

The controller was synthesized with symmetric unit weights 
IQ 100= , IR = , and the prediction horizon set to 4=N . 

Using the MPT toolbox, a parametric solution consisting of 
602 polytopic regions in the 3-dimensional state-space (ve-
locity, position, and the reference) have been obtained. The 
solution was subsequently exported to C-code, implemented 
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using the RTW framework, and experimental data have 
been measured. Figure 4 shows the performance of the 
CFTOC controller when tracking a given position reference. 
Despite the presence of the deadzone nonlinearity, the 
controller acts appropriately even when the flywheel is at 
standstill. This shows the benefits of the MPC approach 
since it allows to include the description of such nonlineari-
ties directly into the prediction model. It also bears noting 
that the tracking is without an offset.  

Minimum Time 

According to minimum-time scheme, the initial target set 
was calculated for 2=T , which means that the reference 
will be reached in 2 time steps once the state is contained in 
the set. Starting from this set the minimum-time controller 
was calculated as a look-up table consisting of 2993 re-
gions. The performance of this controller is compared with 
the CFTOC approach in Figure 5. As can be seen from the 
picture, the minimum-time controller reacts faster and drives 
the position to the respective reference in less number of 
steps compared to the CFTOC scheme. The case in Figu-
re 5 represents a switch from the fully-opened to the fully-
closed position. For this scenario the minimum-time policy 
achieves the reference in 10 steps (i.e. 7 seconds), while 
the CFTOC requires 14 sampling instances (i.e. 7 seconds) 
for the position to reach the reference with zero angular 
velocity.  

  

  
Fig. 4 Position tracking using the CFTOC approach. 

Interesting to notice is the time profile of the manipulated 
variable produced by the minimum-time controller. Although 
one would expect that the input will reach the constraints 
immediately after the change of the reference, it is not so. 
The reason lies in the discrete-time formulation of the prob-
lem. Specifically, at the first instance following the change of 
the reference the controller tries to reach a set of states 
which is “closer” to the reference. However, due to the dis-
crete-time formulation there may be multiple choices of the 
control input which drive the system states to a prescribed 
target set setT  in (21). From this multiple choices only the 
one which minimizes the given performance criterion (21) is 
chosen. Therefore the control profile doesn’t necessarily 
have to reach the constraints on the first instance in order to 

guarantee convergence of the states towards the reference 
in least possible number of discrete steps. 

Conclusion  

In this paper a hybrid model of a servo engine is derived, 
based on the PWA modelling approach. The hybrid model 
was adopted to cope with a deadzone nonlinearity. Conse-
quently, the validation with experimental data has shown 
that this approach matches the behavior of the real plant 
well. Subsequently the model has been used to design an 
MPC control policy. Two approaches have been considered, 
a CFTOC scheme in which an optimal control problem of 
finite size is solved, and a minimum-time setup. The main 
contribution of the paper is the extension of the minimum-
time algorithm to cope with reference tracking problems. 
The results of the control design is a lookup table which 
allows one to implement MPCbased controllers in real-time. 
Both approaches have then been implemented on a target 
platform, allowing to perform real experiments with low ef-
fort. 

 

 
Fig. 5 Comparison between CFTOC and minimum-time 

control approaches. 
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