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Abstract 
The paper shows one possibility how to solve optimal control problems for nonlinear 
systems. These problems can be transformed into finite dimensional optimization 
problems, which can be solved by using a nonlinear programming (NLP). The nu-
merical method with iterative approach is based on sequential quadratic program-
ming (SQP) which needs information about gradients. These gradients are obtained 
by forward integration of the sensitivity equations, which are integrated simultane-
ously with the state equations. The detailed procedure of the application of the sen-
sitivity approach is shown with application to batch and CSTR reactors. Results 
show that the sensitivity approach is an efficient gradient method with good results in 
comparison with other gradient methods. 
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Introduction 

There are many numerical methods able to solve nonlinear 
optimal control problems. Analytical methods represented 
by Bellman’s optimal principle or Pontryagin’s maximum 
principle that solve two-points boundary values problem 
(TPBP) are inappropriate in the case if a complicated 
nonlinear system is assumed. The same is true for the itera-
tive methods represented by control vector iteration (CVI) or 
boundary condition iteration (BCI).  

Another approach is to transform the optimal control prob-
lems into finite dimensional optimization problems using 
parametrization schemes.  

One approach is a complete discretization of state and con-
trol variables – orthogonal collocation (OC). Such formula-
tion can be found in [1, 3, 7, 13]. This approach is currently 
the most versatile and applicable also to mixed continu-
ous/discrete cases [1]. However, the size of the resulting 
nonlinear programming problem (NLP) is very large.  

Other possibility is to leave the states intact and approxi-
mate only the control variables as piecewise constants, or 
with some higher order approximations. This approach is 
known as control vector parameterization (CVP). With CVP, 
different formulations can be found, depending on how 
gradients of the resulting NLP are calculated [15].  

There are three possible ways how the gradients can be 
solved. One of them is a total difference approach which is 
the easiest to implement. Main drawback of this method is 
the lowest accuracy in contrast to other gradient methods. 
The modified algorithm is possible to find in [18]. Another 
possibility is to use adjoint equations [9, 16, 17, 11] ap-
proach which is preferred for the system with a larger num-
ber of optimized parameters and smaller number of con-
straints. In a reverse case the sensitivity equations [4, 19, 8] 
are used due to its easy formulation of the problem and 
forward integration of both states and sensitivity equations. 
The drawback of this method is a generation of a large sys-
tem of differential equations as each optimized parameter 

corresponds to a set of differential equations with the same 
dimension as the number of states of the optimized process.  

The main aim of this paper is to show a derivation of sensi-
tivity equations that are needed for the computation of gra-
dients for CVP. The derivation accuracy is tested on some 
problems of chemical engineering. Next, the gradient meth-
ods are compared and their advantages and disadvantages 
are discussed.  

1. Optimal Control Problem 

1.1 System and Cost Description 

Consider a dynamical system described by the vector of 
ordinary differential equations (ODEs) [5] 

),,,( puxtfx =&  (1) 

with given initial and terminal conditions  

FF xtxxx == )(    ,)0( 0  (2) 

where xnRx∈  is the vector of state variables, unRu∈  is the 

vector of control variables, pnRp∈  is the vector of parame-
ters and  tF  is the final time of the process. 

The optimal control problem is to find optimal control policy 
u(t), vector of the parameters and the final time tF (when 
minimum time problem is considered) that minimize the 
objective function in general Mayer form 

),,,(min 00,, puxtGJ FFputF =  (3) 

with constraints defined in Mayer form as well  

mlpuxtGJ FFllputF ,1    ),,,,(min ,, ==  (4) 

where m is the total number of constraints m = me + mi (me 
– equality constraints, mi  – inequality constraints). 
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It is assumed that the original continuous control trajectory 
can be approximated as piecewise constant on N time inter-
vals  

 ,1    ,    ,)( 1 Nitttutu iii =≤≤= −  (5) 

where 1−−=∆ iii ttt  is the interval length.  

Next assumption is that the state variables are continuous at 
the boundaries  

)()( −+ = ii txtx  (6) 

where −
it  denotes the ending time of stage i and +

it  the 
beginning time of stage i + 1. 

Further constraints are defined as lower and upper bounda-
ries of optimized variables  
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1.2 Optimized Parameters 

The vector of optimized parameters ynRy∈  contains it∆  – 
lengths of the time intervals, ui – control variables, and pi – 
parameters  
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2. Sensitivities 

The sensitivities are defined as partial derivatives of state 
variables with respect to optimized parameters. Thus, the 
sensitivity coefficients sj(t) with initial conditions are defined 
as follows  
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where ny denotes number of optimized parameters.  

Sensitivity coefficients contain information about the sensi-
tivities of the state values to the optimized parameters. The 
partial differentiation of ODE (1) with respect to optimized 
parameters (10) gives  
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where ii ttt ≤≤−1  and )1(,0 −= Ni . The equation (12) can 
be rewritten using (11) as  
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The solution of state variable sensitivities with respect to 
optimized parameters can be obtained by forward integra-
tion of sensitivity equations (13).  

When the sensitivity is computed with respect to time inter-
val ti the discontinuity must be taken into account. In our 
case the situation is considered when the state values are 
continuous (6) at the time interval boundaries. Thus, the 
total differential for a state variable gives  
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as well as  

)(d)(d −+ = ii txtx  (15) 

which gives  
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Differentiating (16) with respect to optimized variables yields  
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When the sensitivity coefficients (11) are used, formula (18) 
is simplified  
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Next, the partial derivative of the cost function (3) or con-
straint (4) with respect to optimized variables gives the next 
formula  
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where it is considered that the variation of xF following (14) 
gives  
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Taking into account the equation (20) and (21) the final 
equation is given as  
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3. Optimization Method Description 

3.1 Static Optimization Problem 

As the piecewise constant control trajectory is considered 
the problem of dynamic optimization is transformed into the 
problem of static optimization (NLP). Next, a suitable gradi-
ent method and algorithm of successive quadratic pro-
gramming (SQP) type is needed. The solution of the prob-
lem with the SQP approach needs information about 
gradients. This information can be obtained with perturba-
tion (finite difference), adjoint or sensitivity approach. The 
last one was used to solve the problem in our study.  

3.2 Algorithm 
 

(1) Initialization of the optimized variables y = y0.  
(2) Forward integration of the system (1) and sensitivity 

equations (13) (x(t) and s(t) are obtained).  
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(3) When the free time problem is investigated the sensi-
tivities s(ti) ( )1(,1 −= Ni ) have discontinuity following 
the equation (19).  

(4) Calculation of the objective function (3), constraints (4), 
and gradients (22).  

(5) Solution of the problem of dynamic optimization (SQP):  
(a) If the optimum is achieved the algorithm will stop y 

= yoptimal  
(b) else it is needed to repeat algorithm from 2 with 

new values of optimized parameters y = ynew. 

3.2.1 Implementation of the Algorithm 

The algorithm was developed and implemented into the 
MATLAB (The MathWorks Inc., Natick, Massachusetts) 
environment. It uses fmincon from Optimization Toolbox for 
NLP formulation and solution. Forward integration of the 
ODE and the sensitivity equations is assured by SUNDIALS 
Toolbox1 that is able of simultaneous or staggered integra-
tion.  

3.2.2 Gradients with Respect to Time 

For numerical reasons, time increments it∆  will be opti-
mized rather than absolute time values ti. Therefore, the 
gradients with respect to time have to be modified corre-
spondingly. The relations between times and their incre-
ments are given as  

∑
=
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N

i
iF tt
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Therefore, the following holds for the derivatives  
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4. Examples 

4.1 Batch Reactor 

The simple batch reactor given in [6] was considered with 
following parameters: k10 = 0.535x1011 min-1, k20 = 0.461x108 

min-1, e1 = 18000 cal mol-1, e2 = 30000 cal mol-1, r  = 2 cal 

mol-1 K-1, 1β  = 0.53 mol l-1, 2β  = 0.43 mol l-1, ,
1

2
e
e

=α  

α
10

20

k
k

c =  and final time tF = 8.0 min;  

The system with initial conditions is described as follows  

1111 )0(    , β=−= xuxx&  (25) 

22212 )0(    , βα =−= xxcuuxx&  (26) 

with initial trajectory of control variable ui(0) = 0.5 ),1( Ni =  

and time intervals 
F

i t
Nt =∆ .  

The control variable u is related to the temperature T via the 
next formula 

                                                 
1homepage: http://www.llnl.gov/casc/sundials/ 
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The goal of the optimization is to maximize an amount of the 
product B at the final time xB(tF)  

)(min 20 Fu txJ
i

−=  (28) 

subject to the piecewise constant control as assumed in the 
original article. The scenarios with fixed and free final time 
are considered.  

4.1.1 Calculation of the Gradients 

For simplicity and demonstrative purposes piecewise con-
stant control variables (N = 3) were chosen. The dimension 
of the final system needed to be integrated is 8 (nx(ny + 1)). 
First a scenario with fixed time intervals was considered. 
The partial derivatives with respect to optimized variables 
(parametrized control variable) are defined as  
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To obtain necessary gradients (29) it is needed to integrate 
sensitivity equations over ];[ 0 Fttt∈ . The sensitivity coeffi-
cients for considered scenario are defined as  
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where Ri is equal to 1 or 0 depending on the time interval ti 
and relevant control value. Note that not all equations need 
to be integrated in each time interval, because the optimized 
variable in the interval ti+1 does not affect on the interval ti. 

Consider now the scenario with free time intervals. In this 
case new sensitivities of dimension nx(N - 1) with respect to 
time are required  
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At the end of the time interval discontinuity of sensitivity 
equations (32), (33) is needed to compute from (19)  
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Then the resulting gradients are derived from (22)  
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The gradients with respect to final time are following (22) in 
this case equal to 2f− . Note that all time gradients were 
modified as was shown in Section 3.2.2. Detailed deriva-
tions of the sensitivity equations can be found in [11]. 

4.1.2 Results and Discussion 

The simulations were performed with various values of tol-
erances for integration as well as optimization (see Table 1). 
The simulations with sensitivity approach were obtained with 
SUNDIALS Toolbox in MATLAB environment and with the 
adjoint approach were obtained with DYNO2 package in 
Fortran environment.  
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Fig.1 Optimal state trajectories with corresponding 

control, N = 6, T3 

Fig. 1 shows optimal concentrations and control value ob-
tained with sensitivity equations approach for 6 piecewise 
constant controls. The highest value of N smoothens the 
control trajectory considerably, following [6], where optimal 
continuous control trajectory was shown.  

 
Level Optimization Integration 
T1 10-3 10-5 
T2 10-5 10-7 
T3 10-7 10-9 

Tab.1 Tolerance levels used in simulations 
 

 T1 
N nODE niter J0 CPU time3 
1 4 4 -0.678826 1.6 
3 8 4 -0.679309 7.2 
6 14 4 -0.679412 33.2 
10 22 4 -0.679435 112.8 
20 44 4 -0.679440 666.1 
 T2 
1 4 5 -0.678825 2.3 
3 8 6 -0.679341 15.2 
6 14 5 -0.679411 61.9 

                                                 
2homepage: http://www.kirp.chtf.stuba.sk/~fikar/dyno/ 
3Intel P4 2.4 GHz 

10 22 5 -0.679428 216.1 
20 44 5 -0.679435 1331.4 
 T3 
1 4 6 -0.678825 2.9 
3 8 6 -0.679341 21.7 
6 14 6 -0.679411 109.3 
10 22 6 -0.679428 392.9 
20 44 6 -0.679435 2541.5 

Tab.2 Results for the batch reactor with sensitivity 
equations approach 

 
 T1 
N nODE niter J0 
1 5 5 -0.678617 
3 5 3 -0.679136 
6 5 4 -0.679305 
10 5 5 -0.678988 
20 5 4 -0.678876 
 T2 
1 5 6 -0.678822 
3 5 5 -0.679336 
6 5 5 -0.679408 
10 5 6 -0.679424 
20 5 8 -0.679431 
 T3 
1 5 7 -0.678825 
3 5 7 -0.679341 
6 5 6 -0.679411 
10 5 7 -0.679428 
20 5 11 -0.679435 

Tab.3 Results for the batch reactor with adjoint equa-
tions approach 

 

It can be seen from the results shown in Tables 2 and 3 that 
the obtained values of the cost functions for tolerance level 
T1 and T2 are better with sensitivity approach in comparison 
to adjoint approach with smaller or equal numbers of itera-
tions except for one case. The values of the cost functions 
for tolerance level T3 are equal for both approaches, but the 
sensitivity equations need a smaller number of iterations. It 
shows that the accuracy of the gradients obtained with sen-
sitivity equations is better mainly for the low value of the 
tolerance level.  

The increasing numbers of piecewise constants change the 
total number of optimized variables too. Therefore, the 
number of equations needed to integrate changes consid-
erably only for sensitivity approach, because each optimized 
variable generates a new set of differential equations. This 
change influences the total CPU time, as shown in the Ta-
ble 2. Note that the computational effort for sensitivity ap-
proach can be considerably simplified using the second 
order of sensitivities following the article [20] and [2].  

Finally, the adjoint equations approach (Table 3) with the 
low tolerance level has worse results, but when the toler-
ance level is growing the results are the same as in the 
sensitivity approach. Note that the increasing number of 
optimized variables does not affect the number of equations 
to be integrated. 
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Fig.2 Optimal control profiles for nonlinear reactor (4 

control variables) with corresponding upper and 
lower bounds (dotted red color), N = 11, T2 
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Fig.3 Optimal control profiles for nonlinear reactor (3 

control variables), N = 10, T2 

4.2 Nonlinear CSTR Reactor 

Consider a problem given in [12, 14, 2]. In the isothermal 
continuous stirred tank reactor four simultaneous chemical 
reactions are taking place. The problem consists of deter-
mining four optimal control profiles to obtain a maximum 
economic benefit. The controls are the flowrates of three 
feed streams and an electrical energy input used to promote 
a photochemical reaction.  

The system is described by the following set of differential 
equations  

36121141 236.17 uxxxxqxux −−−=&  (36) 

3221212 1466.17 xxxxqxux −−−=&  (37) 

32323 73 xxqxux −−=&  (38) 

542144 3.5135.2 xxxxqxx −+−=&  (39) 

543255 3.51219 xxxxqxx −+−=&  (40) 

3615466 23102.6 uxxxxqxx −+−=&  (41) 

36177 46 uxxqxx +−=&  (42) 

2
37654

21418

5)352811(23

099.01.47.3)(8.5

uxxxxq

uuuqxx

−++++

−−−−=&
 (43) 

where q = (u1 + u2 + u4). The vector of process initial condi-
tions is following  

Tx ]0.000 0.1046 0.1394 0.1804  0.0899 0.0467 0.2507 1883.0[)0( =
 (44) 

with the boundaries on control variables ],20;0[1 ∈u  
],6;0[2 ∈u  ]4;0[3 ∈u  and ]20;0[4 ∈u . The final time is fixed 

with the value tF = 0.2. 

The target of the optimization is to find optimal control pro-
files over the time tF  to maximize 

)(max 80 Fu txJ
i

=  (45) 

Two scenarios with the tolerance level T2 were investigated:  

• First one used 4 control variables with initial condi-
tions u(0) = [10 3 2 6]T and 11 piecewise constants. 
Optimal solution (Fig. 2) acquired after 15 iterations 
with sensitivity equations approach is J0 = 21.7575. 
The DYNO package finds after 165 iterations opti-
mal value J0 = 21.7570. 

• Second one used 3 control variables (last one was 
constant on the value 6 over the time) with initial 
conditions u(0) = [10 3 2]T and 10 piecewise con-
stants. Optimal solution (Fig. 3) with sensitivity 
equations approach acquired after 8 iterations is J0 
= 20.0895. The DYNO package is able to obtain 
value J0 = 20.0906 after 61 iterations.  

Conclusions 

This paper presented one possibility for calculation of gradi-
ents for the method of control vector parametrization. De-
tailed derivations and the application of sensitivity equations 
approach to solve necessary gradients were described. The 
advantages and disadvantages of the presented method are 
compared to other gradient methods. The results show that 
this approach is able to solve optimal control problems of 
nonlinear systems with a high accuracy with a smaller num-
ber of iterations as compared to other gradient methods.  
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