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Abstract 
In the paper we describe a mathematical model of a chemical reactor with 
concentrated parameters and show some results obtained by dynamic 
optimization of the inlet and the outlet flows of entering components and the 
mixture. The flows are considered as functions of time and are subject to real 
constraints. Suitable criterion of optimality can be constructed from the history 
of concentration of the product and the history of the control variables. The 
results obtained by numerical computation show that for some choices of the 
criterion meaningful optimal trajectories in the state space exist. Control along 
such trajectories can increase quality of the product by means of control logic, 
with low acquisition and operational costs.  
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Introduction 

Chemical technology uses two basic types of reactors: 
batch and flow ones. An advantage of batch-type reactors, 
which realize a reaction of finite volume of inlet components 
in a sufficiently large time horizon, is high degree of conver-
sion of inlet components. A disadvantage for larger volumes 
of production per time unit is big capacity of the reactor 
required, which significantly influences both acquisition and 
operational costs and cannot be increased arbitrarily. Larger 
volumes of production under limited cost of equipment can 
be achieved using flow reactors with smaller capacity, which 
however work with lower degree of conversion.  

Besides a change of device parameters and consequent 
increasing acquisition costs there however exist other pos-
sibilities of enhancing the parameters of production. Using 
suitable changes of control inputs in time, over a finite time 
horizon, increasing the concentration of the product can be 
achieved as well. This holds especially in the case of paral-
lel or bi-directional reactions, where desired product of the 
reaction can further react in an undesirable way. 

Consider a chemical reaction of type 

1 1 1 1... ...m m n nA A B Bα α β β+ + → + + . 

If Aic , Bjc  3[mol. ]m−  are the concentrations of reacting com-

ponents and products, 0ic
3[mol. ]m−  the concentrations of 

inlet components iA , V [ 3m ] volume of the mixture in the 

reactor, iq [ 3 1.m s− ] the inlet flows and q  [ 3 1.m s− ] the outlet 
flow, behavior of the reaction is described by a set of 
nonlinear equations in the form [4], [6]:  
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for all 1,...,i m= , 1,...,j n= . We assume for simplicity that 
the reaction is isothermic, so the reaction rate term Tr  is 
constant. Otherwise, it depends on the temperature accord-
ing to the formula 
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where 0 , ,r E R are constants.  

If we put  
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we obtain a nonlinear system in the state-space description 
form  

( )( ) ( ), ( )t t t=x f x u& . (5) 

Values of the control variables are subject to real constraints  

[ ]max0,i iu u∈ . (6) 

All the state variables ix  can be subject to constraints given 
by technological requirements as well. 

A general form of the criterion to be minimized is [2]: 

( )0
0

( ( )) ( ), ( ), min
ft

fJ t f t t t dtϕ= + →∫x x u  (7) 

where continuously differentiable functions ϕ  and 0f  are 
chosen to express practical demands on the process, ft  is 
the time of running the reaction. The criterion (7) is to be 
minimized over the space of functions ( )tu  with respect to 
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dynamic and algebraic constraints (5) and (6). The problem 
can be complicated by ending conditions in the form  

( )( ) 0ft =ψ x .  (8) 

where ψ  is a continuously differentiable vector function.  

Necessary conditions of optimality for the problem (5) - (8) 
are known as Pontryagin’s principle of maximum [1], [8]. If 

0( , , , ) TH t f= +x u λ λ f  is the Hamiltonian with the state ad-
joint function ( )tλ , for optimal trajectory ( )tx  holds:  

*( , )=x f x u&      (9) 

0(0) =x x ,  ( )( ) 0ft =ψ x  (10) 
*( , , , )T H t∂

= −
∂
x u λλ
x
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{ }*( ) arg min ( , , , )
U

t H t
∈

=
u

u x u λ  (13) 

where U is the set of feasible values of u (6) and ν  is a 
Lagrange multipliers vector.  

1. The Criterion of Optimality 

There are several reasonable choices of 0f  and ϕ  that 
come into account. In all the cases we consider that the time 
of reaction ft  is given. A more complicated situation can be 

dealt with, where ft  is not known and is to be optimized.  

One possibility is to maximize the volume or the concentra-
tion of a product kB , subject to given amount of inlet compo-
nents and the constraints (6):   

0

( ) ( ) min
ft

BkJ q t c t dt= − →∫  (14) 

0

( )
ft

i iu t dt W=∫ . (15) 

Instead of the constraints (15) on the volumes of inlet com-
ponents it is possible to consider a single constraint on total 
volume of the mixture produced:   

0

( )
ft

q t dt W=∫ . (16) 

The isoperimetric constraints (15) or (16) can be replaced 
by trivial ending conditions ( )i f iy t W=  or ( )fy t W= , respec-
tively, by extending the state-space description of equations 
i iy u=&  or y q=& . Initial conditions are trivial in most cases: 

0(0)i ix x= .  

If we substitute (14) into the necessary conditions of opti-
mality (9) - (13), the Hamiltonian H is affine in u. It follows 
that if the Hamiltonian is dependent on all the components 
of u, the extremal *( )tu  must be for each t on the boundary 
of U. Either *( )tu  is constant or its components are discon-

tinuous at some time points in 0, ft⎡ ⎤⎣ ⎦  and change from 0 to 

maxiu  or back. It can however happen that in a certain inter-
val ( , , , )H tx u λ  is independent of some components of u. In 
such a case the problem can have so-called singular solu-
tion [2].  

Although the optimal control history will probably contain 
step changes, discontinuities in the control flows can be 
disadvantageous in practice. Continuous histories that are 
an approximation of the actual discontinuous solution are 
obtained if the criterion is extended of quadratic terms of 
control: 
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It seems that another advantage of quadratic terms in the 
criterion is in many cases faster convergence to the solu-
tion.  

2. The Optimization Method 

There exist numerical methods based directly on the Pon-
tryagin’s maximum principle [7], [9]. In this paper an alterna-
tive approach is described. For relatively simple, but ap-
proximate numerical solution the algebraic constraints (6) 
and the terminal conditions (8) can be removed and added 
to the criterion by means of smooth penalty terms [2], [7]. 
The transformed functional has the form  
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where 
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f u u uσ
=

⎡ ⎤= + −⎣ ⎦∑u  (19) 

2
( ( )) ( ( ))p f ft tϕ σ=x ψ x  (20) 

and 0σ >  is sufficiently large, but not too large. Similar 
terms can be used to replace the state constraints.  

To obtain a solution with higher precision, a sequence of 
solutions for rising σ  has to be constructed, where the 
previous solution is taken as initial estimate for the next 
step, but it is well known that this method is rather inefficient 
[5].  

To solve the problem with augmented criterion (18) we used 
an approach described in more detail in [3]. Let us choose a 
value of parameter M and define the set of continuous func-
tions such that the components of the optimal control func-
tion ( )tu  can be in interval 0, ft⎡ ⎤⎣ ⎦  well approximated by 

weighted sums  

1
( ) ( )

M

j jk k
k

u t a b t
=

= ∑  (21) 

where 1,...,j m=  and the base functions { }( )kb t , 1,...,i M=  
are independent. Expression (21) can be written in matrix 
notation as 

( ) ( )t t=u Ab  (22) 

where A is a matrix of weighting coefficients. If we substitute 
(22) into (5) and (7), we obtain a set of coupled differential 
equations  

0 ( ( ), ( ), )
( ( ), ( ), )
f t t tJd
t t tdt

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

x Ab
x f x Ab

 (23) 

with initial conditions    
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0

0(0)
(0)
J ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦xx

. (24) 

Equation (23) can be numerically integrated from 0 to ft  for 

given A to obtain the criterion value ( ) ( )fJ t J= A . The pa-
rameter space is thus discretized. The value ( )J A  then can 
be numerically minimized to obtain the optimal coefficients 

* *( )jka=A .   

Consider that the components of A are reordered into a 
vector z, where dim .mM=z . For minimization of 

( ) ( )J J=A z  we are using the quasi-Newton algorithm 

1k k k kα+ = − ∇z z G  (25) 

where k∇  is the gradient of ( )J z  in kz , 0α ≥  is the value 
obtained by line-search minimization of ( )J z  from kz  in 
direction k k− ∇G .  Matrix kG , which represents the appro-

ximation of the inverse of Hessian ( )2 / i jJ z z∂ ∂ ∂  in kz , is set 

as unit matrix in the first step and is updated in each step 
using the BFGS formula [5]: 

1 1
T T T T

k k k
k k T T T+

⎛ ⎞ +
= + + −⎜ ⎟

⎝ ⎠

γ G γ δδ δγ G G γδG G
δ γ δ γ δ γ

 (26) 

where 1k k+= −δ z z , 1k k+= ∇ −∇γ .  

The gradient ( )1( ) / ,..., / T
MmJ J z J z∇ = ∂ ∂ ∂ ∂z  of the criterion 

can be in the beginning approximated by central differences   

( ) ( )
2

i i

i

J J h J h
z h
∂ + − −

≈
∂

z e z e  (27) 

where 0h >  is a small number and ie  the unit vector in i-th 
direction. Since every computation of ( )J A  needs integra-
tion of (23), the evaluation of (27) can be a considerably 
time-consuming operation for larger M. In [3] it is shown that 
exact formula for the gradient of ( )J A  is  

0

( )
ft

j
ij i

J H b t dt
a u
∂ ∂

=
∂ ∂∫  (28) 

where ( , , , )H tx u λ  is the Hamiltonian. Computation using 
this formula requires explicit knowledge of partial derivatives 
( )/H∂ ∂x  and ( )/H∂ ∂u , but in the case of models of type 
(1) this information is usually easily available. Demand fac-
tor of determination of J∇ can be significantly reduced for 
special types of base systems as shown in [3]. In the exam-
ple below we chose a sufficiently large N  and used the 
simplest - piecewise constant base system defined for 

1,...,i N=  as  

( ) ( ( 1) ) ( )ib t t i T t iTη η= − − − − , (29) 

where ( )tη  is Dirac unit-step function.  

3. Solved Example 

For a demonstration consider the case of a reaction of type 

2A B C+ →  (Fig. 1). The reaction is isothermic and the 
reactor contents is perfectly mixed.   
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Fig.1  A reactor example 
 

By substitution into equations (1) - (2) we obtain 
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For , ,k A B C=  holds  

( )

( ).

k k
k

k
k A B

d Vc dc dVV c
dt dt dt
dcV c q q q
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= + =

= + + −
 (31) 

The equations (30) then can be rewritten into the standard 
form 
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= − + −

= − + +

= + −

 (32) 

The control and the state vector are   

( , , )

( , , , ) .

T
A B

T
A B C

q q q

c c c V

=

=

u
x

 (33) 

The parameter values were chosen as: 
3 3 1

max max 10 .A Bq q m s− −= =         
3 3 1

max 1.5 10 .q m s− −= ×  
3

max 0.1V m=  
3

0 0 1mol.A Bc c m−= =  
1Tr =  
300 .ft s=  

The criterion to be minimized is 
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( )2 2 2

0

10 .
ft

C A BJ q c q q q dt= − + + +∫  (34) 

with the isoperimetric constraint on total volume 

3

0

( ) 0.3
ft

q t dt W m= =∫ . (35) 

The constraint (35) was eliminated by extending the state 
description of the equation ( )y q t=& .  

The initial conditions are  
3 3(0) (0) (0) 10 mol.A B Cc c c m− −= = =        

3 3(0) 0.01 , (0) 0V m y m= = . 

The terminal conditions are   
3( ) 0.01fV t m=  

3( ) 0.3fy t W m= = . 

The figures 2 - 4 below show obtained histories of the state 
and the control variables. The computation is rather time-
demanding. For approximation of the control history 32N =  
was chosen. Total number of optimized parameters is 99.  

The example shows that meaningful optimal trajectory 
exists. The optimal process obviously consists of three pha-
ses. In the middle phase, where all three control valves are 
opened, the flows are constant. In the initial and the ending 
phase some control variables reach their maximal or mini-
mal values. 

 
 

 
Fig.2  The histories of the concentrations 

3, , [mol. ]A B Cc c c m−  

 
 

 
Fig.3  The histories of the volumes 3( ), ( )[ ]V t y t m  
 

 
Fig.4  The histories of the control variables 

3 3 1, , [10 . ]A Bq q q m s− −  

 

Using the knowledge of optimal history the quality of the 
product can be enhanced by means of control logic. Another 
way how to increase concentration of the product is using a 
rector with bigger capacity or connecting more reactors into 
series, which can be however much more expensive a solu-
tion.     
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