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Abstract  
Robust stability analysis of uncertain discrete time systems is studied. The LMI ro-
bust stability analysis method based on polynomial parameter dependent Lyapunov 
function is presented. This method is compared with other robust stability analysis 
methods formulated through LMI using linear parameter dependent Lyapunov fun-
ction. The results are tested on randomly generated examples.   
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Introduction  

Robust stability of uncertain dynamic systems has major 
importance when the real world system models are conside-
red. The realistic approach includes uncertainties of various 
kinds into the system model and a basic required quality of 
the system is its stability in the whole uncertainty domain – 
this quality is called robust stability. A possible approach to 
consider system uncertainties is to use affine or polytopic 
description of uncertain system. Polytopic model is approp-
riate for using LMI approach to robust stability analysis and 
robust control design. 

Recently developed Linear Matrix Inequality (LMI) approach 
belongs to the most attractive ones due to its computational 
efficiency – the respective interior-point based algorithm 
provides the solutions in polynomial time (e.g. Boyd et al. 
1994). Therefore significant effort has been made to trans-
form major control problems into LMI framework (e.g.: Boyd 
et al. 1994, Skelton et al. 1998, Dettori and Scherer 2000; 
Peaucelle, et al. 2000; Henrion,  et al. 2002, deOliveira et al. 
1999;  Rosinová and Veselý  2004; Veselý  2007).  

In robust control of linear systems a quadratic stability no-
tion has been introduced, where one Lyapunov function is 
considered for the whole uncertainty domain. This approach 
includes robustness against arbitrarily quick changes of 
system parameters within the uncertainty domain, however 
for slowly varying systems it yields too conservative results. 
Therefore the parameter dependent Lyapunov function has 
been developed which enables to obtain less conservative 
results. Recently, more general, though computationally 
demanding form of Lyapunov function – a polynomially 
parameter-dependent one has been studied with promising 
results, (Bliman 2004, Montagner et al., 2006, Ebihara et al. 
2006 and references therein).  

In this paper several stability analysis methods for linear 
uncertain discrete-time systems are compared. Polynomially 
parameter-dependent Lyapunov function is presented, yiel-
ding the respective sufficient condition for linear discrete-
time polytopic system. Qualities of the considered stability 
analysis methods are studied and compared on the random 
generated examples. 

1. Robust stability for uncertain  
discrete-time system 

This section is devoted to robust stability problem formula-
tion for discrete-time linear systems; several recent results 
for robust stability analysis using LMI approach are recalled. 
Consider a linear discrete-time uncertain system with poly-
topic uncertainty domain: 
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nRkx ∈)(  is state vector; Ai are known constant matrices of 
appropriate dimensions corresponding to the nominal sys-
tem. 

NR∈α  denotes a vector of  iα  respective to (2).  

The uncertain system (1), (2) can be equivalently described 
by vertices of the respective polytope 

},...,,{ 21 NAAA .  (3) 

The aim of robust stability analysis is to check the stability of 
the uncertain system (1), (2) or, equivalently, (3) in the who-
le uncertainty domain. 

We start with basic notions. Quadratic stability corresponds 
to the existence of one Lyapunov function for the whole 
uncertainty domain as determined in the following definition. 

Lemma 1 (Quadratic stability) 

The polytopic system (1), (2) is quadratically stable if and 
only if there exists a symmetric positive definite matrix P 
such that  

0)()( <− PPAA T αα       (4)  
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Quadratic stability guarantees the stability in the whole un-
certainty domain including arbitrary quick changes of ele-
ments of matrix )(αA , however it is often overly conservati-
ve, when the slowly varying systems are considered. To 
reduce the conservatism of quadratic stability, the parame-
ter-dependent Lyapunov function )(αP  (denoted in the 
sequel as PDLF) has been introduced for uncertain system 
(1), (2). The respective robust stability notion is considered 
according to (deOliveira et al. 1999): 

Definition 1   

System (1) is robustly stable in the convex uncertainty do-
main (2) with parameter-dependent Lyapunov function if and 
only if there exists a matrix 0)()( >= TPP αα such that 

( ) ( ) ( ) ( ) 0<− αααα PAPA T            (5) 

 for all α such that ( )αA  is given by (2).         

For a polytopic uncertain system we will consider PDLF in a 
form 
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The following fundamental robust stability result decouples 
Lyapunov matrix from a system matrix enabling the use of 
PDLF in analysis and design.  

Lemma 2 (deOliveira et al. 1999) 

Uncertain system (1), is robustly stable in uncertainty do-
main (2) if there exist symmetric matrices Pi and a matrix G 
such that 
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The robust stability condition in general form with two auxil-
iary matrices has been presented in (Dettori and Scherer, 
2000) and (Peaucelle et all., 2000). The sufficient robust 
stability condition for a discrete-time system is:  

Lemma 3 (Peaucelle et al. 2000) 

Uncertain system (1) is robustly stable in uncertainty domain 
(2) if there exist symmetric matrices Pi and a matrices H and 
G such that 
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It is important to note that there are no specific requirements 
on matrices H and G.  

Robust stability conditions from Lemma 2 and 3 consider 
parameter dependent Lyapunov function (6) linear in the 
uncertain parameters. Therefore the received stability condi-
tions are sufficient only and there still remains space to relax 
them closer to necessary and sufficient ones. One possible 
way is to consider polynomial Lyapunov function.  

In this paper we consider polynomially parameter-
dependent Lyapunov function (PPDLF) according to (Ebi-
hara et al. 2006): 

)),(()()),(()( pMGpMGP p
T αααα Π=  (9) 

where  

nnRM ×∈)(α  is a given affine function of scalar parame-
terα ;  

( ) TTpT
n MMIpMG ])(,...,)(,[)),(( ααα =                      (10) 

is a given polynomial matrix function of α , p denotes the 
degree of this polynomial with respect to α , in the sequel 
we will denote )),(( pMG α simply as ),( pG α .  

Note that for )(αM =0, we have T
nnnIpG ]0,...,0,[),0( = , 

nn
n RI ×∈  is identity matrix and nn

n R ×∈0  is zero matrix. 

)(αpΠ  is an affine matrix function of α , to be determined 

through optimization. For nxn system, )(αpΠ  is 
(p+1)nx(p+1)n symmetric matrix. 

The following denotation for orthogonal complement is used 
in this paper.  

For a matrix nmRA ×∈  with nrArank <=)( , )( rnmRA −×⊥ ∈  

is a matrix such that 0=⊥AA and  .0)( >⊥⊥ AA T   

In the next developments the frequently used Finsler’s lem-
ma is used to obtain robust stability condition for polynomial-
ly parameter-dependent Lyapunov function in the form of 
LMI. 

Lemma 4 (Skelton 1998, Ebihara et al. 2006) 

Let matrices nnRQ ×∈  and nmRB ×∈ be given such that 

nBrank <)( . Then the following conditions are equivalent.  

(i)  The inequality  0)( <⊥⊥ QBB T   holds. 

(ii) There exists R∈0µ such that  0<− BBQ Tµ  holds for 

all  0µµ > . 

(iii) There exists mnRF ×∈  such that  0<++ TT FBFBQ . 

The equivalency between (i) and (iii) is frequently used to 
transform matrix inequalities into LMI. 

2. Stability analysis using polynomial  
Lyapunov function 

In this section the robust stability condition is developed for 
discrete-time polytopic system using polynomially parameter 
dependent Lyapunov function (PPDLF). The developments 
pursue the ideas presented in (Ebihara et al. 2006) and 
(Vesely, 2007). 

Substituting PPDLF (9) into the robust stability condition (5) 
we obtain: 
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Inequality (11) can be rewritten as  
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The polynomial term ),( pG α can be eliminated using 
Lemma 4 and the following equality (Ebihara et al. 2006) 
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where  

]0[]0)([)),(( npnpnnpnp IIMIpML ⊗−+⊗= ××αα  

Owing to equivalency of (i) and (iii) in Lemma 4, and (13), 
robust stability condition (12) is  equivalent to the existence 
of a matrix n)p(n)p(RZ 1212 +×+∈  such that the following ine-
quality holds 
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For given )(M α inequality (14) is LMI for unknown matri-
ces )(αpΠ  and Z, since )(αpΠ  is affine in α  as well as 

)(A α  and )p),(M(L α . Therefore inequality (14) is robust 
stability condition for uncertain discrete-time polytopic sys-
tem (1), (2) as stated in Lemma 4. 

Lemma 4 

Uncertain system (1), is robustly stable in uncertainty do-
main (2) if there exist matrix Z such that inequality (14) 
holds. 

To illustrate the use of Lemma 4 to robust stability analysis 
we study in detail the case when PPDLF of degree 1 is 
considered. 

Robust stability analysis using PPDLF  with p=1 

In this section the robust stability condition (14) is formula-
ted for PPDLF degree p=1. In this case we consider PPDLF 
in the form (9) with 
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Since (14) is LMI for unknown matrices )(p αΠ and Z, 
owing to the linearity of (15) and (17), inequality (14) can be 
rewritten for each vertex of the polytopic domain and result 
is obtained by solving the respective N  LMIs .  
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Robust stability condition (19) is more general than ones 
received using linear PDLF (Lemma 2 and Lemma 3). The 
condition (8) based on PDLF is received for p=0: having p=0 
there is  nI),(G =00 , ii M),M(L =0  and  
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Taking GZ,HZ,M ni === 21110 , and substituting into 
(14) the inequality (8) is immediately obtained.  

Note that even for p=1, when taking constant M for the who-
le uncertainty domain, again the PDLF case is received. 

In the next section the obtained PPDLF based robust stabili-
ty condition (19) is checked and compared with PDLF based 
robust stability conditions. 

3. Examples 

The robust stability condition developed in Section 3 with 
polynomially parameter dependent LF - inequality (19) for 
polynomial of degree 1, is compared with previous PDLF 
stability conditions (7) and (8). The comparison includes: 
• quadratic stability (4) denoted as QS 
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• robust stability with PDLF (linear Lyapunov function):             
- condition (7) – denoted as PDLF1                      
- condition (8) – denoted as PDLF2  

 

• robust stability with polynomial PDLF:             
- condition (19) – denoted as PPDLF. 

The matrices of uncertain system (1), (2) has been random-
ly generated for various input data. We focus on cases close 
to stability bound.    

Characteristics of the examples and generated systems:  
• Number of generated uncertain systems in the conside-

red testing data  (s=100 or 500) 
• System dimension n =3 or 4  
• Number of polytope vertices N = 4 or 8 
• “Closeness” to stability bound: maximal eigenvalue mo-

dulus of all vertices Mρ :   prescribed interval for Mρ . 

Example 1  

s = 500, n =3, N = 4, ( )1960 ;.M ∈ρ  

Example 2  

s = 100, n =4, N = 4, ( )180 ;.M ∈ρ  

Example 3  

s = 100, n =4, N = 4, ( )190 ;.M ∈ρ  

Example 4  

s = 100, n =2, N = 8, ( )190 ;.M ∈ρ  

The respective results are summarized in Tab.1 

 
 QS PDLF1 PDLF2 PPDLF 
Ex. 1 1 324 441 455 
Ex. 2 0 75 93 96 
Ex. 3 0 57 88 89 
Ex. 4 0 77 94 94 
  Tab.1  Comparison of stability results  

for generated examples 

Matrices )(M α  has been considered as in (17), taking 

ni iIM =   or  ii AM = . 

It can be noted that quadratic stability does not work in the 
studied examples – it is overly conservative to analyse sta-
bility for the studied examples. Stability condition PDLF1 
often provides reasonable results and is computationally 
very simple. PDLF2 and PPDLF provides similar results; 
though there exist cases where PPDLF is better, there are 
quite rare. 

Comparing the computational demands of the compared 
methods, there are significant differences between them. 
Though only polynomial of 1st degree is considered, PPDLF 
is much more demanding. Comparison of number of inequa-
lities and variables to be computed from LMI is summarized 
in Tab.2. 

Conclusion 

Robust stability analysis problem has been studied for dis-
crete-time uncertain system. Several methods from literatu-
re using parameter dependent Lyapunov function of the 
linear type has been considered and compared with poly-
nomially parameter dependent Lyapunov function stability 
analysis method. Though the novel PPDLF method is more 

general than considered PDLF ones, since it includes the 
latter as a special case, the obtained results favour the 
PDLF2 robust stability method. The reason is that PDLF2 
provides results rather close to that of PPDLF with signifi-
cantly less computational demand. According to our expe-
rience, PDLF2 can be the first choice; PPDLF can be re-
commended for the cases rather close to stability bound, 
where PDLF2 does not indicate stability. 

The obtained results for robust stability analysis are of inte-
rest also for robust controller design.  
 

 
number of un-
known        variab-
les 

number of 
inequalities to 
be solved 

QS 
2
1)n(n +

 N)n(n
2
1+

 

PDLF1 2

2
1 nN)n(n

+
+

 Nn)n( 12 +  

PDLF2 22
2
1 nN)n(n

+
+

 Nn)n( 12 +  

PPDLF – 1st 
degree 

21212 nNn)n( ++  Nn)n( 214 +  

Tab.2 Comparison of dimensions of problem  
           for various robust stability conditions 
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