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Abstract  
Some aspects of the model-based robust residual generation with discrete-time 
state observers, as well as the eigenstructure based design procedures are presen-
ted in the paper. The design task is to modify the observer state matrix in a prescri-
bed manner where the extra freedom is used to decouple the disturbance and some 
part of outputs. An extended exposition of the problem is presented here to handle 
the special case of the pole placement eigenvalue set, and an example is given to 
illustrate the algorithm performance. 
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Introduction 

Automated diagnosis has been one of the more fruitful ap-
plications in sophisticated control systems, with potential 
significance for domains in which diagnosis of systems must 
proceed while the system is operative and testing opportuni-
ties are limited by operational considerations. The real prob-
lem is usually to fix the system with faults so that system 
can continue its mission for some time with some limitations 
of functionality. Thus, diagnosis is only part of larger prob-
lem known as fault detection, identification and reconfigura-
tion (FDIR). The practical benefits of an integrated approach 
to FDIR seem to be considerable, especially when knowl-
edge of available fault isolations and system reconfigura-
tions is used to reduce the cost and increase the reliability 
and utility of control and diagnosis. 

Therefore, the essential aspect for the design of fault-
tolerant control requires the conception of diagnosis proce-
dure that can solve the fault detection and isolation problem. 
This procedure composes residual generation (that contain 
information about the failures or defects) followed by their 
evaluation within decision functions. To failures or process 
disturbance detection, analytical redundancy is used to 
generate residuals that are based on implicit information in 
functional or analytical relationships, which exist between 
measurements taken from the process. A fault in the fault 
diagnosis systems can be detected and located when has to 
cause a residual change and subsequent analyze of residu-
als have to provide information about faulty component 
localization. 

In this note one type of robust residual generation is consid-
ered. Starting with observer based residuals, the solution is 
carried out along the standard eigenstructure assignment, 
and using the optimal strategy for disturbance decoupling 
the problem of partly output decoupling is outlined, to calcu-
late the estimator gain matrix. An interesting point is that 
presented design has the essential structure of a standard 
disturbance decoupling algorithms. 

Used principle can be viewed as extension to the method 
applied in [1]. An example is presented to demonstrate the 
role of eigenstructure assignment in the optimization proce-
dure, where the solution is easily achieved by solving for a 
set of desired observer eigenvalues. 

1. Observer based residuals 

Generally, a discrete-time linear dynamic system with sen-
sor and actuator faults can be modeled by equations 
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where q(i) ∈ Rn is the state vector,  u(i) ∈ Rr is the control 
input vector, y(i) ∈ Rm is the measurement vector, d(i) ∈ Ro 
is an unknown disturbance vector, fa(i) ∈ Rr is the actuator 
fault vector, fs(i) ∈ Rm is the sensor fault vector, and matrices 
F ∈ Rnxn, G ∈ Rnxr, C ∈ Rmxn are known finite valued matrices. 

For such a system (1), (2), which must be observable, the 
state estimator can be defined as 

( 1) ( ) ( ) ( ( ) ( )e ei i i i+ = + + −q Fq Gu J y y   (3) 

( ) ( )e ei i=y Cq   (4) 

where J ∈ Rnxm is the observer gain matrix. In the standard 
setup, the residual generator has the following form 

( ) ( ( ) ( )) ( ( ) ( ))E e E ei i i i= − = −r V y y V y Cq   (5) 

where VE ∈ Rpxm is a projection matrix and r(i) ∈ Rp is the 
residual vector. 

The actual prediction error and residuals can be written as 

( 1) ( 1) ( 1) ( ) ( ) ( ) ( )e e a si i i i i i+ = + − + = + − +e q q F e Gf Jf Ed   (6) 

( ) ( ) ( ) ( ) ( )E E s Ei i i i= + = +r V Ce V f He V f   (7) 

( 1) ( ) ( ) ( ) ( ) ( 1e a si i i i i+ = + + − + +r HF e Hd HGf HJf V f   (8) 

where 

,e E= − =F F JC H V C   (9) 

The condition for (5) to be a residual generator is 

,E E= =HE V CE 0 V C 0   (10) 

together with stabile eigenvalues of the estimator system 
matrix (9). These conditions assure that, after a transient 
due to the effect of initial conditions, in the absence of faults 
the residual will be almost equal to zero. 
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2. Projection matrix 

Consider that exist to (10) any solution of the form 

=YE XCE   (11) 

Pre-multiplying (10) from right-hand side by identity matrix 
leads to 

1(( ) ) ( )T T−=YE YE CE CE CE CE XCE=

+

0

1 T−

  (12) 

1(( ) ) ( ) ( )T T−= =X YE CE CE CE XCE CE   (13) 

respectively, where 
1( ) (( ) ) ( )T T+ −=CE CE CE CE   (14) 

is the right pseudoinverse of CE. 

Pre-multiplying of (13) from right-hand side by CE gives 

( )+=XCE XCE CE CE   (15) 

( ( ) )m
+− =X I CE CE CE 0   (16) 

respectively. Thus, (16) implies, that projection matrix can 
be designed as follows 

( ( ) )m
+− =X I CE CE CE 0   (17) 

where X ∈ Rpxm is any arbitrary nonzero matrix and I ∈ Rmxm. 
Since maximal number of linear independent rows in VE is 
m - rank (CE), it is possible to set p = m - rank (CE) to design 
number of rows for X. 

3. Residual factorization 

Assuming zero initial condition as well as the absence of 
faults, the Z transforms of (6) and (7) are 

1( ) ( ) ( )ez z z−= −e I F Ed��   (18) 

1( ) ( ) ( )ez z z−= − =r H I F Ed��   (19) 

If there are no multiple eigenvalues, eigenvalues factoriza-
tion of Fe takes the form 

T
e =F NZM   (20) 

where 
T T= =M N NM I   (21) 

1 2 n=   N n n n"   (22) 

11

22

0 0
0 0

,

0 0

T

T
T

T
nn

z
z

z

   
   
   = =   
   

     

m
m

M Z

m

"
"

# # % ##
"

  (23) 

N is the right eigenvector matrix, MT is the left eigenvector 
matrix, and �(Fe) = {zl, | zl < 1|, l = 1,2,...,n} is the eigenvalues 
spectrum of Fe. 

Then, resolvent Q can be written as 
1 1( ) ( ) ( )T T

ez z z− −= − = − = −I F NM NZM N I Z MQ�   (24) 
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respectively. After substitution of (25) into (22) the residual 
factorization takes form 
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4. Eigenstructure assignment 

Given eigenvalues spectrum �(Fe) = {zl, | zl < 1|, l = 1,2,...,n} 
then the necessary property for eigenstructure assignment 
can be written as 
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( )l lz= − −JCn I F n   (28) 

respectively. If one apply (28) to JC, the standard form of 
eigenstructure assignment can be formulated as 

1 1 1( ) ( )n nz z= − − −    JC n n I F n I F n" "   (29) 

Using condition (26), disturbance decoupling can be ob-
tained if each column of E is assigned as a right eigenvec-
tors of Fe, i.e. 

1 1 1( ) ( )o z z= − − −    JC e e I F e I F e" "   (30) 

where o < n and 

1 o=   E e e"   (31) 

Analogously, the estimator output decoupling can be ob-
tained, if each row of H is assigned as a left eigenvectors of 
Fe. Since orthogonal property (21), the estimator output 
decoupling can be formulated with columns of matrix HT  
assigned as right eigenvectors of  Fe, i.e.  

1 1 1( ) ( )p pz z  = − − −  JC h h I F h I F h" "   (32) 

where p < n and 

1
T

p =  H h h"   (33) 

Using (30) and (32) the mixture of disturbance decoupling 
and partly output decoupling can be formulated as follows 

= −JCK L   (34) 

where 

{ , 1,2, , , }l l q q p o q= = ≤ + <hD …H   (35) 

is the set of selected columns of HT, and 

E H= +L L L   (36) 

1 1( ) ( )E oz z= − − −L I F e I F"   (37) 

1 1( ) ( )H qz z = − − − L I F h I FD D"   (38) 

1 1o q =  K e e h hD D" "   (39) 

5. Gain matrix design 

Pre-multiplying (34) from right-hand side by identity matrix 
leads to 

1(( ) ) ( )T T−= −JCK L CK CK CK CK   (40) 

1(( ) ) ( ) ( )T T− += − = −J L CK CK CK L CK   (41) 

respectively, where 
1( ) (( ) ) ( )T T+ −=CK CK CK CK   (42) 

is the right pseudoinverse of CK. 
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According to (41), (42) the relation holds 
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Matrix 0 on the left-hand side of (43) represents any trivial 
solution from the null-space of CK, i.e. 

( ( ) )m
+− =Z I CK CK 0   (44) 

where Z is an arbitrary nonzero matrix of appropriate di-
mension. 

Thus, the general form of the solution (41) is 

( ) ( ( )m
+ += − + −J L CK Z I CK CK   (45) 

One can prove obtain any solution of (34) if o + q = n (K and 
L are square matrices). 

6. Illustrative example 

To demonstrate properties one simple system described by 
the discrete-time state-space equations (1), (2) was consid-
ered where 

  
0.9993 0.0987 0.0042

1 0 0
0.0212 0.9612 0.0775 ,

0 1 1
0.3985 0.7187 0.5737

 
  =       

F C

0.0051 0.0050 2.9345
0.1029 0.9612 , 1.9764
0.0387 0.5737 3.9234

  
  = =  
    

G E  

and (9) computing with Matlab Control Toolbox yields for 
given system matrices 

0.4253 0.4944 0.0691
0.4944 0.5747 0.0803

− − 
=  − 

H  

so that the desired left eigenvector was chosen as 

2 0.4944 0.5747 0.0803T T= = −  h hD  

with correspondence to desired eigenvalue zH = 0.2. To-
gether with desired eigenvalue zE = 0.1 were constructed 
matrices 

2.9345 0.4944
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3.9234 0.0803

− 
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(0.1 ) (0.2 ) 2.0684 0.4332
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Upon some computation was found 

0.5569 0.1641 0.6901 0.5555 0.6485
0.1732 0.5519 , 0.5713 0.3741 0.7359
0.2032 0.5124 0.4442 0.7426 0.1053

− −  
  = − = − −  
  − −  

J N  

and associated eigenvalues spectrum �(Fe) = {0.41, 0.1, 0.2}. 
One can verify the decoupling property, where 

2

4.8972
5.2830 , 0.0228 0.0000 0.7623
0.0000

T

− 
 = = − 
  

Ne h N  

 

Concluding remarks 

The paper presents the basic design principle of a robust 
residual generation for discrete-time linear multi-input and 
multi-output (MIMO) dynamic systems. The exposed prob-
lems of disturbance decoupling, in estimator based residu-
als was extended to (partly) output decoupling. Presented 
extensions use the eigenvector matrix properties and com-
bine two standard design formulations. A constructive pro-
cedure for finding the estimator gain matrix and an illustra-
tive example of the results are given. Presented applications 
can be considered as a task concerned the class of eigen-
structure assignment problems. 
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