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Abstract  
In the paper a design procedure generally known as regional pole assignment is 
applied to discrete-time uncertain system state observer design. The standard form 
of the observer gain matrix is presented to obtain design algorithm based on the 
discrete algebraic Riccati equation, as well as is derived the linear matrix inequalities 
reformulation of the design algorithm. The design results in the assignment of the 
observer state matrix eigenvalues to any desired circular location in stabile Z-plane 
circle. An example is given to illustrate the algorithm performance. 
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Introduction 

The state-space control system design assumes that the full 
system state vector is available. For most control system the 
measurement of the full state vector is impractical, if not 
impossible, in all but the simplest of systems and a tech-
nique for estimating the states or outputs of a plant from the 
available plant information is proposed. The systems that 
estimate the states of another system are generally known 
as state observers. Using in control, the inclusion of a state 
observer into control loop can reduce the robustness of 
state feedback control, where, specifically, system matrix 
disturbance can prevent the convergence of observer esti-
mates. 

It is well known that the transient response of a linear sys-
tem is related to the location of its poles (the system matrix 
eigenvalues), and therefore a design procedure generally 
known as pole assignment is mostly used in design control-
lers, as well as state observers for fixed linear discrete-time, 
as well as continuous-time systems. Because of the pa-
rameter uncertainty is difficult to assign eigenvalues at exact 
stabile location but in many occasions it is enough to assign 
them in a specified region for some practical design specifi-
cation. 

Equations describing observers can be developed in several 
different ways, here is chosen to take in develop the state-
space approach. This approach is based on the controlled 
model of the system, where control model input is the differ-
ence between actual output and estimated output of the 
system. However, some results on state observer design 
based on robust eigenvalues and eigenvectors assignment 
are available in [3], [6] but almost given by general inverse 
matrices. 

The paper presents a robust algorithm to assign all eigen-
values of the discrete-time state observer system matrix Fe 
in a specified disk with radius ρ and center a = a+j0 lying 
within the unit circle in the complex Z plain. The design 
criterion is quadratic stabilization of the state estimation 
error system under an observer gain matrix using Lyapunov 
function with substitution modification for regional eigenval-
ues assignment. The paper considers a similar problem of 
robust pole assignment as was given in [7] but presents 
more simpler form to derive the design algorithms and LMI 
reformulation. 

1. Robust observer design 

Specifically, a discrete-time uncertain system can be con-
sidered as 

( 1) ( ) ( ) (i i+ = + ∆ +q F F q G )iu

}I

i iy

i iy

e

  (1) 

( ) ( )i i=y Cq   (2) 

q(i) ∈ Rn,  u(i) ∈ Rr, y(i) ∈ Rm, matrices F ∈ Rnxn, G ∈ Rnxr, 
C ∈ Rmxn are finite valued, and ∆F ∈ Rnxn  is unknown matrix 
which represents time-varying parametric uncertainties. 

It is assumed that considered uncertainty matrix is norm 
bounded and can be written as 

∆ =F NHM   (3) 
T ≤H H I   (4) 

where N ∈ Rlxn, M ∈ Rnxl are known constant matrices which 
define the structure of the uncertainty and the parameter 
uncertainty H belong to the set 

{ :nxl T= ∈ ≤H H HU   (5) 

For such a system (1), (2), which must be quadratically 
stabilizable and detectable, the robust state observer is 
defined as 

( 1) ( ) ( ) ( ) ( ( ) ( ))e e ei i i+ = + ∆ + + −q F F q Gu J y   (6) 

( ) ( )e ei i=y Cq   (7) 

where J ∈ Rnxm is the observer gain matrix. Substituting (7) 
into (6) gives 

( 1) ( ) ( ) ( ) ( )e ei i+ = + ∆ + + −q F F JC q Gu J   (8) 

where 

e = + ∆ +F F F JC   (9) 

is the observer system matrix. Then it is obvious, that the 
state estimation error system is 

( 1) ( ) ( )i i+ = + ∆ +e F F JC   (10) 

and e(i) = q(i) – qe(i). 
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2. Quadratic stabilization 

The state estimation error system (10) is quadratically stabi-
lizable, if there exists a positive definite symmetric matrix 
P ∈ Rnxn such that 

( ( )) ( ) ( ) 0Tv i i i= >e e Pe   (11) 

( ( )) ( 1) ( 1) ( ) ( ) 0T Tv i i i i i∆ = + + − <e e Pe e Pe   (12) 

are the Lyapunov function and its difference, respectively. 
Substituting (10) into (12) implies that 

( ) ( )T+ ∆ + + ∆ + − <F F JC P F F JC P 0

<

<

)

)T

T

T

  (13) 

for all H ∈ U. From point of Schur complement, (12) is then 
equivalent to formula (* denotes symmetric transposition) 

1

1

0

−

−

 − + ∆ +
= 

∗ − 
  ∆   −

= + +     ∗ ∗∗ −     

P F F JC
P

0 JC 0 FP F
0 0P

  (14) 

1
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P F F JC
P

I JC I FP F
I IP

  (15) 

respectively. As all terms of (15) are symmetric matrices, by 
Schur complement two last of terms can be rewritten as 

( ) (T T T T T

T T T T T

= − − + + − + =
= − +

X I C J JC I M H N NHM
C J JC M H N NHM

  (16) 

It is straightforward to verify that for I > A yields 

( )(T T− − + = − −AA A A I I A I A   (17) 

( ( )( ) )T T T= + − − − − ≤ +AA A A I I A I A A A   (18) 

Then, using (4) and (18), as well as the matrix identity 
T T T+ ≤ +BC CB BB CC   (19) 

(16) may be rewritten as 
1

1 1

1

T T T T

T T T T

T T T T
ε

ε

ε
ε

−

−

≤ − + + ≤
≤ − + + ≤

≤ − + +

X C R C M H N NHM
C R C NN M H HM

C R C NN M M
  (20) 

where R-1 = JTJ ≥ 0 and ε > 0. 

Using Schur complement notation for (20) inequality (15) 
takes the form 

1

1 1

0
T

T T T
ε

ε

−

−

 − + ∆ +
≤ 

∗ − 
   −

= −   
∗ − ∗ − +   

P F F JC
P

P F NN 0
P C R C M

<
M

  (21) 

That is 

1 1

0
T

T T T
ε

ε

−− +
<

∗ − − + 

P NN F
P C R C M M


   (22) 

1 1 1( )T T T
εε− −+ − − +F P C R C M M F P NN 0T <   (23) 

respectively. Thus, previous inequality implies that for a 
positive definite symmetric matrix Q there is P as a solution 
of the Riccati equation 

1 1 1( )T T T T
εε− −+ − − + +F P C R C M M F P NN Q 0=

0

0

1−

) T =

)

=

  (24) 

conditioned by inequality 

0Tε− >P M M   (25) 

3. Observer gain matrix 

Denote 

J = +F F JC   (26) 

and consider the Lyapunov function of the estimated error 
system in the form 

1 1( ) ( )T
J J

− −= + ∆ + ∆ − <V F F P F F P   (27) 

Since (13) implies (23), analogously (27) implies 
1 1 1( )T T T

J Jε ε− − −≤ − − + <V F P M M F P NN   (28) 

Using (24) one can obtain 
1 1 1( )T T T Tε ε− − −+ − + + =F P C R C M M F NN Q P   (29) 

and substituting (29) into (28) results 
1 1 1( ) ( )T T T T T

J Jε ε− − −≤ − − + − −V F P M M F F P C R C M M F Q  
 (30) 

1( )T T T
J Jε −≤ − − −V F P M M F DF Q   (31) 

respectively, where 
1 1( )T Tε− −= + −D F P C R C M M      (32) 

and 
1( )T Tε−= + −F D P C R C M M      (33) 

Using (33) and denoting 

=J DY      (34) 

inequality (31) can be rewritten as 
1 1

1

( )(
( )

T T T
C

T T
C C

ε ε
ε

− −

−

≤ + − + −
= −

V D P C R C M M YC P M M F
F P M M F

     (35) 

where 
1( T T

C ε−= + − +F D P C R C M M YC      (36) 

Taking 
1T − + =C R C YC 0      (37) 

the observer gain matrix J is given by equation 
1T −= = −J DY DC R      (38) 

and inequality (35) takes form 
1

1

( ) ( )
0

T T T T T T

T T T

ε ε −

−

≤ − − − − −
= − − = − − <

V D P M M D Q D P M M D DC R CD
Q DC R CD Q JRJ

    

 (39) 
Inequality (39) implies, that matrix V is negative definite. 

4. Design based on LMI formalism 

The procedure for deriving the optimization conditions 
yields, after using nontrivial transformations, a set of linear 
matrix inequalities (LMI). 

Pre-multiplying (39) from left and right hand side by matrix 
P > 0 gives 

76AT&P journal  PLUS2 2007

ROBUST AND ADAPTIVE CONTROL



1 1( )T T T T
εε−+ − − +PF P C R C M M F P P PNN P 0<

<

1T −

1

  (40) 

and LMIs for (40) can be written as 

0T= >P P   (41) 

1

0
T Tε−

− 
 ∗ 
 ∗ ∗ − − + 

P PN PF
I 0

P C R C M M
  (42) 

Since (20) can be written as 
1 0Tε ε ε−− + <P M I M   (43) 

inequality (43) implies 

0
Tε

ε
 −

< 
∗ − 

P M
I

  (44) 

The observer gain matrix is then given by equation 
1 1( )T Tε− −= − + −J F P C R C M M C R   (45) 

It is straightforward to verify that in nominal system case the 
state estimation error system (10) is stabilizable under an 
observer gain matrix J if exists a positive definite symmetric 
matrix P satisfying linear matrix inequality 

1 0T −

− 
< ∗ − − 

P PF
P C R C

  (46) 

The observer gain matrix J for nominal conditions is given 
as 

1 1( )T T− − −= − +J F P C R C C R   (47) 

5. Regional pole assignment 

Consider a stabile linear discrete-time system described by 
the dual state-space equation 

( )( 1) ( ) ( )
T Tai iρ ρ

−+ = +F I Cp p iu   (48) 

0< a <1, 0 < � <1, a,� ∈ R, � ≤ a. If P be a symmetric posi-
tive definite matrix then there exists Lyapunov function 
v(p(i)), 

( ( )) ( ) ( )Tv i i i=p p Pp   (49) 

such that 

( ( )) ( 1) ( 1) ( ) ( ) 0T Tv i i i i i∆ = + + − <p p Pp p Pp   (50) 

Therefore if (50) holds, clearly 

( ) ( )( ) ( ) 0
T

T a ai
ρ ρ

 − −
− < 

 

F I F Ip P P p i   (51) 

2

( ) ( )Ta a
ρ ρ
− −

− < −
F I F I QP P

ρ

T
h

* <

*
h

0

2

  (52) 

respectively, where Q is a symmetric positive definite matrix. 
Then non-equality (52) can be rewritten as 

2 2( )T Ta a a ρ− − + + − < −FP PF FPF P Q   (53) 

If zh is an eigenvalue of F, vector mh
T is associated left ei-

genvector, zh
* is the complex conjugated eigenvalue with zh 

and associated complex conjugated left eigenvector is mh
*T, 

then holds 
* *,T T T

h h h h hz z= =m F m F m m   (54) 

Pre-multiplying (53) from left-hand side by mh
T as well as 

from right-hand side by mh
* give 

* * * 2 2

*

( )T T T T
h h h h h h h h

T
h h

a a a ρ− − + + −
< −

m FPm m PFm m FPFm m Pm
m Qm

    

 (55) 

and substituting (54) into (55) yields  
* * 2 2 *( ( ) ( )) T T

h h h h h h ha z z z z a ρ− + + + − < −m Pm m Qm      (56) 

Since Q is positive definite, the positivity of P yields 
* * 2 2( )h h h ha z z z z a ρ− + + + − <      (57) 

If zh  = zhR + jzhI  = x +jy, then using it in (57) one can obtain 
2 2 2 22 0ax x y a ρ− + + + − <      (58) 

2 2( )x a y ρ− + <      (59) 

respectively, which means that all eigenvalues of F are 
located in a specified disk with radius � and center a = a+j0 
lying within the unit circle in the complex Z plain. 

The existence condition of P satisfying (39) is equivalent to 
the existence of P-1 satisfying (27). Substituting 

, ,a
ρ ρ
−

← ← ∆
F I C FF JC J F

ρ
∆

←      (60) 

into (27) gives 

1 1( ) ( ) 0
T

e ea a
ρ ρ

− −− −
= −

F I F IV P P <   (61) 

where 

e = + ∆ +F F F JC      (62) 

ρ ρ ρ
∆

=
F N MH      (63) 

It is evident from (51) and (61) that using substitutions (60) 
all eigenvalues of Fe be located in a specified disk with ra-
dius � and center a = a+j0 lying within the unit circle in the 
complex Z plain. 

6. Illustrative example 

The dynamic system is described by the discrete-time state-
space equations (1), (2), and (3) where 

0.9993 0.0987 0.0042
1 0 0

0.0212 0.9612 0.0775 ,
0 1 1

0.3985 0.7187 0.5737

 
  = =       

F C  

0.0051 0.0050 0 0
0 0 0

0.1029 0.9612 , 0 1 , 0.2
0 1 1

0.0387 0.5737 0 0

   
    = = =             

G N M  

Assuming the precision matrix 

1 10 0
0 10

−  
=  
 

R  

the optimal values of LMI variables are 

13.4311 0.5218 2.3960
0.5218 11.0708 2.9650 , 21.9711
2.3960 2.9650 12.8394

ε
− 

 = − 
 − − 

P =  
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and according to (45), the observer gain matrix J and error 
system matrix Fe = F – JC were obtained as follows 

0.3412 0.0492 0.6581 0.1479 0.2879
0.0543 0.4217 , 0.0755 0.5395 0.2899
0.2159 0.4121 0.1716 0.3066 0.0543

e

−  
  = − = −  
  − − −  

J F
− 





=

− 




 

with error system matrix eigenvalues spectrum 

( ) {0.5800, 0.2816 j0.1054}eρ = ±F    

Based on the same performance specification as mentioned 
above, using regional eigenvalues placement parameters 
a = 0.3, � = 0.3, as well as substitutions (60), (63), the opti-
mal solution of LMIs gives 

50.2135 15.9235 33.6428
15.9235 46.0448 37.5997 , 169.0870
33.6428 37.5997 65.7243

ε
− 

 = − 
 − − 

P  

The observer gain matrix and error system matrix, using the 
same substitutions, was computed as follows 

0.3814 0.0947 0.6179 0.1934 0.2826
0.0819 0.4989 , 0.1031 0.4623 0.3395
0.1724 0.5214 0.2151 0.1973 0.1201

e

−  
  = − = −  
  − − −  

J F  

and obtained error system matrix eigenvalues spectrum is 

( ) {0.0993, 0.3468, 0.5140}eρ =F  

Concluding remarks 

The paper presents a robust algorithm to assign all eigen-
values of the discrete-time state observer system matrix Fe 
in a specified disk with radius � and center a = a+j0 lying 
within the unit circle in the complex Z plain. These parame-
ters of the desired disk are just need to be specified, and the 
pole locations within disk are only dependent on the matri-
ces Q and R. The design conditions are expressed by linear 
matrix inequalities, as well by discrete Riccati equation, for 
systems with parameter uncertainty in system matrix F. 
Used method presents some simplification of design fea-
tures, where simulation results have confirmed the effec-
tiveness of the suggested approach. 
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