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Abstract 
The paper deals with continous-time adaptive control of a multi input – multi output 
nonlinear process. A nonlinear model of the process is approximated by a continuo-
us-time external linear model. The parameters of the CT external linear model are 
recursively estimated via an external delta model with the same structure as the CT 
model. The control system configuration with two feedback controllers is considered. 
Design of controllers is based on operations in the ring of polynomial matrices. Re-
sulting proper controllers ensure asymptotic tracking of step references and step 
load disturbances attenuation. A control quality is achieved using the exact pole 
placement method as well as by selectable weight matrices dividing weights among 
numerators of transfer functions of subcontrollers. The control is tested on a two 
input – two output nonlinear process represented by a model of two spheric liquid 
tanks in series. 

Keywords: Adaptive control, MIMO system, continuous-time model, delta model, 
parameter estimation, polynomial method. 

Introduction 

A wide range of technological processes requires to control 
more output signals independently. In order to achieve this, 
it is necessary to have at least as many independent input 
signals as output signals to be controlled. These processes, 
classified as MIMO (multi input-multi output) systems, are 
usually nonlinear. This fact may cause difficulties when 
controlling such processes using conventional controllers 
with fixed parameters. One possible method to cope with 
this problem is using adaptive strategies based on an ap-
propriate choice of an external linear model (ELM) with 
recursively estimated parameters. These parameters are 
consequently used for parallel updating of controller‘s pa-
rameters.  

The control itself can be either continuous-time or discrete. 
While for design of a continuous-time controller, it is neces-
sary to know a continuous-time ELM and its parameters, a 
discrete-time controller requires knowledge of a discrete 
ELM. Experiences of many authors in the field of control of 
non-linear technological processes indicate that the con-
tinuous-time (CT) approach gives better results when con-
trolling processes with strong  nonlinearities. 

Two basic approaches can be used for identification of the 
continuous-time ELM. The first method is based on filtration 
of input and output signals where the filtered variables have 
the same properties (in the s-domain) as their non-filtered 
counterparts, e.g. [1]. Derivatives of filtered signals that are 
necessary for the parameters estimate of the CT ELM are 
obtained from differential filters. This method has, however, 
some drawbacks – the necessity to solve additional differen-
tial equations representing the filters and estimate time 
constants of these filters.  

The second strategy uses an external δ-model of the con-
trolled process with the same structure as a CT model. The 
basics of δ-models have been described in e.g. [2], [3]. 
Here, parameters of δ-models can directly be estimated 

from sampled signals without the necessity to filter them. 
Moreover, it can be easily proved that these parameters 
converge to parameters of CT models for a sufficiently small 
sampling period (compared to the dynamics of the con-
trolled process). A complete description and experimental 
verification can be found in e.g. [4]. The control results ob-
tained using both mentioted strategies were compared in 
[5]. 

This contribution deals with adaptive control of a nonlinear 
MIMO process. The parameters of the CT ELM of the pro-
cess are obtained via corresponding delta model parameter 
estimation. The control configuration with two feedback 
controllers is used according to [6]. Input signals for the 
control system are step references and step load distur-
bances. Resulting controllers are derived by the polynomial 
method [7], [8]. The approach is tested on a nonlinear TITO 
process represented by a nonlinear model of two spheric 
liquid tanks in series. 

CT External Linear Model 

In the time domain, the generalized continuous-time ELM is 
specified  by the vector differential equation 

( ) ( ) ( ) ( )t tσ = σA y B u  (1) 

where d dtσ =  is the derivative operator, r∈ℜy stands for 

the controlled output vector, m∈ℜu is the control input 
vector and A, B are polynomial matrices in σ. Using the 
Laplace transform under zero initial conditions,  the model is 
described in the s-domain as 

( ) ( ) ( )s s s=Y G U . (2) 

Here, the transfer function of the controlled system is as-
sumed in the form of the left coprime polynomial matrix 
fraction 
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1( ) ( ) ( )s s s−=G A B  (3) 

where ( ) [ ]rrs s∈ℜA  and ( ) [ ]rms s∈ℜB  are polynomial 
matrices. Further, consider strictly proper G(s), and, with 
regard to some following operations, assume the highest 
power of s on the diagonal of the matrix A in each row. 
Moreover, the polynomials on the diagonal are assumed to 
be monic polynomials (with the unit coefficient by the high-
est power of s). 

External Delta Model 

Establish the δ-operator defined by 

0

1q
T
−

δ =  (4) 

where q is the forward shift operator and T0 is the sampling 
interval. When the sampling interval is shortened, the δ-
operator approaches the derivative operator σ so that 

0 0
lim

T →
δ = σ  (5) 

and, the δ-model  

( ) ( ) ( ) ( )t t′ ′ ′ ′δ = δA y B u  (6) 

approaches the continuous-time model (1). Here, t ′ is the  
discrete time,  and,  A' and  B'  are matrices  with   

identical structure as A and B in the form 
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with polynomials 
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where 

, 1
iin iia′ = , ii ijn n> for j ≠ i and ii ikn m>  for all i, j = 1, … , r  

and  k = 1, … , m. 

Substituting 0 iit k n′ = − where 0 iik n≥ , the equation descri-
bing i-th row of (6) can be derived as  
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where the terms in (11) are 
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Delta Model Parameter Estimation 

Obviously, an actual value of the controlled output yi(k0) in 

the i-th row is only in the term 0( )iin
i iiy k nδ −  (for j = i and p 

= 0 in (12)). Now, denoting 

, 0( )
i

j j
i y i iiy k nϕ = δ − , , 0( )

k

j j
i u k iiu k nϕ = δ −  (14) 

and, introducing the regression vector 

(
)

1
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 (15) 

then, the vector of parameters in the i-th row of ′A   

(
)

1

1

0, 1 , 1 0, 1,

0, , 0, 1 , 1 0, ,

... , ... , ... , ... ,
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can be recursively estimated from the regression (ARX) 
model 

0, ( )ii

i

n T
i i ii y kδϕ = + εΘ Φ . (17) 

or, in detail, from the equation 

1
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Controller Design 

The control system with two feedback controllers is depicted 
in Fig. 1. Here, G represents the continuous-time ELM, GQ 
and GR are controllers. Further, r∈ℜw is the vector of refer-

ences and m∈ℜv  is the vector of load disturbances. 
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Fig.1 Control system configuration. 

Generally, their transforms can be expressed as 

1( ) ( ) ( )w ws s s−=w F h , 1( ) ( ) ( )v vs s s−=v F h  (19) 

Considering all elements of both input signals as step fun-
ction, matrices Fw and Fv in (19) take forms 

( ) ( )w vs s s= =F F I  (20) 

and vectors (19) can be rewritten to as 

010 20( ) ...
T

rww w
s

s s s
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

W  (21) 

10 20 0( ) ...
T

mv v v
s

s s s
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

V  (22) 

where wi0 , vj0 are constants. 

The transfer functions of controllers are assumed in the form 
of right coprime polynomial matrix fractions  

1
1 1( ) ( ) ( )Q s s s−=G Q P , 1

1 1( ) ( ) ( )R s s s−=G R P  (23) 

where 

1( ) [ ]mrs s∈ℜQ , 1( ) [ ]mrs s∈ℜR  and 1( ) [ ]rrs s∈ℜP . 

The goal is to find such proper controllers that ensure the 
control system stability, asymptotic tracking of  step referen-
ces and step load disturbance attenuation. The procedure 
for deriving admissible controllers can be performed as 
follows: 

Using descriptions of basic signals in the control system  

1 1
0( ) ( ) ( ) ( )s s s s− − ⎡ ⎤= = +⎣ ⎦y A B u A B u v  (24) 

[ ]1 1
0 1 1 1 1( ) ( ) ( ) ( )s s s s− −= − −u R P w y Q P y  (25) 

the output and tracking error vectors can be derived as 

1 1
1 1 1( ) ( ) ( )s s s− −⎡ ⎤= +⎣ ⎦y P D B R P w Bv  (26) 

1 1
1 1 1 1( ) ( ) ( ) ( )s s s− −⎡ ⎤= + −⎣ ⎦e P D AP BQ P w Bv  (27) 

vhere 

1 1 1( )= + +D AP B R Q . (28) 

Now, feedback controllers given by a solution of the matrix 
Diophantine equation 

1 + =AP BT D  (29) 

with a stable polynomial matrix [ ]rr s∈ℜD on the right side 
ensure the control system stability. Here, the matrix T has 
been established as 

1 1= +T R Q . (30) 

The step load disturbances will be rejected for the matrix P1 
in (27) divisible by denominators s in (22).  

This condition is fulfilled for P1 in the form  

1 1( ) ( )s s s=P P% . (31) 

Asymptotic tracking of step references is ensured for the 
term 1 1+AP BQ  divisible by s in denominators of (21).  

Considering (27) and (31), this divisibility is fulfilled for Q1 
taking the form 

1 1( ) ( )s s s=Q Q% . (32) 

Taking into account (31), (32) and (29), the controller poly-
nomial matrices are given by a solution of the matrix Dio-
phantine equation 

1( ) ( ) ( ) ( ) ( )s s s s s s+ =A P B T D%  (33) 

where 

1 1( ) ( ) ( )s s s s= +T R Q% . (34) 

Evidently, the degrees of matrices in (34) are given as 

1deg deg=R T , 1deg deg 1= −Q T% . (35) 

Considering expansions of matrices T ,  R1 and 1Q% as 

deg

0

( ) j
j

j

s s
=

=∑
T

T T  (36) 

deg

1 1
0

( ) j
j

j

s s
=

=∑
T

R R  (37) 

deg
1

1 1
1

( ) j
j

j

s s −

=

=∑
T

Q Q% %  (38) 

where 1,j jT R and 1 jQ% are matrices of coefficients, a solu-

tion of (33) leads to a simple term of T given by 

0 0 0=B T D  (39) 

and, subsequently, to  

10 0=R T . (40) 

It is well known that a solution of a single polynomial matrix  
equation provides only two unknown polynomial matrices. 
Hence, selectable coefficient matrices mm

j ∈ℜΓ can be 

introduced that distribute weights among 1R  and 1Q%  pa-

rameters. Denoting expansions of matrices 1R  and 1Q%  as 

1 1,j jR Q% ,  j = 1, …, deg T  (41) 

then, their elements can be calculated from equations 

1 j j j=R Γ T ,  ( )1 j j j= −Q I Γ T%  (42) 

 for  j = 1, …, deg T. 
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Remark: If j =Γ I  for all j, the control system in Fig. 1 sim-

plifies to the 1DOF control configuration. If j =Γ 0  for all j, 

and, both references and load disturbances are step fun-
ctions, the control system corresponds to the 2DOF control 
configuration. 

From the practical point of view, it is effective to choose Γj 
as diagonal matrices 

1

2

.. .. 0

:

: ..
0

j

j
j

j m

γ⎛ ⎞
⎜ ⎟

γ⎜ ⎟
= ⎜ ⎟
⎜ ⎟
⎜ ⎟γ⎝ ⎠

Γ  (43) 

for all j. 

Now, taking into account (31) and (32),  transfer functions of 
controllers can be rewritten to the form 

( ) 1
1 1( ) ( ) ( )Q s s s

−
=G Q P% %  (44) 

( ) 1
1 1( ) ( ) ( )R s s s s

−
=G R P% . (45) 

Note that degrees of polynomial matrices in (33) must be 
determined in accordance with the requirement on proper-
ness of controller transfer functions (44) and (45). 

Example 

Consider two spheric liquid tanks in series as depicted in 
Fig. 2.  

d2 d1 

 q2 q1 

q2f q1f 

h2 
h1 

 
Fig.2 Two spheric liquid tanks in series. 

Using  standard  simplifications,  the  model of  the plant can 
be described by two nonlinear differential equations 

1
1 1 1 1 1( ) f

d h
h d h q q

d t
π − + =  (46) 

2
2 2 2 1 2 2( ) f

d h
h d h q q q

d t
π − − + =  (47) 

where dj are diameters of tanks, hj are liquid levels, qj are 
stream flowrates and qjf are their inlet values, (for j = 1, 2). 
The stream volumetric flowrates depend upon levels in the 
tanks as 

1 1 1 2q k h h= −   (48) 

2 2 2q k h=   ( 1 2 1 1if 0 thenh h q q− < = − ) (49) 

where k1, k2 are constants. 

Initial conditions for (46), (47) are steady state liquid levels 

1 1(0) sh h= , 2 2(0) sh h= . The model parameters and values of 

variables at the operating point used in simulations are: 

 2.5
1 0.85 m / mink = , 2.5

2 0.5 m /mink = , 1 2 2 md d= = , 

1 1.5 msh = , 2 1.3msh = , 3
1 0.38 m /mins

fq =  

and   3
2 0.19 m /mins

fq = . 

Both the control and controlled variables are considered as 
deviations from their values at the operating point 

1 1 1( ) ( ) s
f fu t q t q= − ,  2 2 2( ) ( ) s

f fu t q t q= −  (50) 

1 1 1( ) ( ) sy t h t h= − ,  2 2 2( ) ( ) sy t h t h= − . (51) 

Polynomial matrices of the CT external linear model in the 
form of LPMF have been chosen as 

01 02

03 04
( )

s a a
s

a s a
+⎛ ⎞

= ⎜ ⎟+⎝ ⎠
A ,  01

04

0
( )

0
b

s
b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

B   (52) 

and their parameters were estimated using a δ-model with 
corresponding matrices 

01 02

03 04
( )

a a
a a

′ ′δ +⎛ ⎞
′ δ = ⎜ ⎟′ ′δ +⎝ ⎠

A , 01

04

0
( )

0
b

b
′⎛ ⎞

′ δ = ⎜ ⎟′⎝ ⎠
B . (53) 

Further, two parallel identification procedures according to 
(18) were used for regression equations 

1 0 01 1 0 01 1 0

03 2 0 1 0

( 1) ( 1) ( 1)
( 1) ( )

y k b u k a y k
a y k k

′ ′δ − = − − − −

′− − + ε
 (54) 

2 0 04 1 0 02 1 0

04 2 0 2 0

( 1) ( 1) ( 1)
( 1) ( )

y k b u k a y k
a y k k

′ ′δ − = − − − −

′− − + ε
 (55) 

where 

0 0
0

0

( ) ( 1)
( 1) i i

i
y k y k

y k
T
− −

δ − = ,  i = 1,2 . (56) 

Here, the recursive identification method with exponential 
and directional forgetting according to [9]. 

With regard to requirement of the controller properness, 
matrices P1 and T have been chosen in the form 

01 02
1 1

03 04
( ) ( )

s p s p
s s s

s p s p
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

P P%  (57) 

11 01 12 02

13 03 14 04
( )

t s t t s t
s

t s t t s t
+ +⎛ ⎞

= ⎜ ⎟+ +⎝ ⎠
T  (58) 

and, the diagonal matrix on the right side of (33) as 

2

2

( ) 0
( )

0 ( )

s
s

s

⎛ ⎞+ α
⎜ ⎟=
⎜ ⎟+ α⎝ ⎠

D  (59) 

 

Then, solving (33), the coefficients in (57) and (58) can be 
derived as 

02 03 0p p= = , 01 04 1p p= = , 

2

01
01

t
b
α

=
′

,  11 01
01

1 (2 )t a
b

′= α −
′

, 02 03 0t t= = ,  (60) 

02
12

01

a
t

b

′
= −

′
, 03

13
04

a
t

b
′

= −
′

, 
2

04
04

t
b
α

=
′

,  14 04
04

1 (2 )t a
b

′= α −
′

. 
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Choosing the matrix (43) as 

11
1

12

0
0
γ⎛ ⎞

= ⎜ ⎟γ⎝ ⎠
Γ  (61) 

and, solving (42), transfer functions of controllers take forms 

11 11 11 12

12 13 12 14

(1 ) (1 )
( )

(1 ) (1 )Q
t t

s
t t

− γ − γ⎛ ⎞
= ⎜ ⎟− γ − γ⎝ ⎠

G  (62) 

01
11 11 11 12

04
12 13 12 14

( )R

t
t t

ss
t

t t
s

⎛ ⎞
γ + γ⎜ ⎟
⎜ ⎟=
⎜ ⎟

γ γ +⎜ ⎟
⎝ ⎠

G . (63) 

Simulation Results 

The recursive estimation of δ-model parameters was per-
formed with the sampling interval T0 = 0.05 min. in all simu-
lation experiments. For the start, P controllers with a small 
gain were used. In most simulations, the quadruple closed-
loop pole α = 0.4 has been chosen. 

In  the  first case,  the controlled  output  and control input  

time responses were simulated to step references 1 0.1w =  

and 2 0.05 for 0w t= ≥ . The responses in Figs. 3, 4 and 5 

clearly illustrate the effect of parameters γ upon control 
properties. Their hihger values accelerate the control, how-
ever, they lead to overshoots in control output responses 
and to higher values of the control input. 

Next simulations show the effect of the parameter α versus 
parameters γ on the controlled output responses. While α 
affects both controlled outputs, by a suitable γ selection only 
single controlled output can be influenced, as shown in Figs. 
6 – 8. 

The controlled output responses for step changes of refer-
ences are shown in Fig. 9. Presented results demonstrate 
that by a suitable selection of parameters α and γ, smooth 
control responses of a good quality without overshoots and 
oscillations can be obtained. 

The simulation results in Fig. 10 show the controlled output 
responses to step references and load disturbances 

( ) 0.2v t = ± . Here, the controller parameters were estimated 
only in the first (tracking)  interval   t < 30.  During   interval   
t ≥ 30, fixed parameters were used.  
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Fig.3 Controlled output responses  

α = 0.4, γ11 = γ12 = 0, 2 (1), γ11 = γ12 = 0.4 (2), 
 γ11 = γ12 = 1 (3). 
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Fig.4 Control input responses  
α = 0.4, γ11 = γ12 = 0 (1), γ11 = γ12 = 0.4 (2),  
γ11 = γ12 = 1 (3). 
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Fig.5 Control input responses  
α = 0.4, γ11 = γ12 = 0 (1), γ11 = γ12 = 0.4 (2),  
γ11 = γ12 = 1 (3). 
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Fig.6 Controlled output responses  
γ11 = γ12 = 0.2,  α = 0.2 (1), α = 0.4 (2), α = 0.6 (3). 
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Fig.7 Controlled output responses  
α = 0.4, γ12 = 0, γ11 = 0 (1),  γ11 = 0.2 (2), γ11 = 0.5 (3). 
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Fig.8 Controlled output responses  
α = 0.4, γ11 = 0,  γ12 = 0, 2 (1), γ12 = 0.4 (2),  
γ12 = 1 (3). 
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Fig.9 Controlled output responses  

α = 0.4, γ11 = γ12 = 0, 2 (1), γ11 = γ12 = 0.4 (2),  
γ11 = γ12  = 1 (3). 
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Fig.10 Controlled output responses to disturbances  
α = 0.4, γ11 = γ12 = 0 (1), γ11 = γ12  = 0.5 (2). 

Conclusions 

In this paper, one approach to the continuous-time control of 
nonlinear multi input-multi output processes was proposed. 
The presented strategy enables to create an effective con-
trol algorithm. This algorithm is based on an alternative 
continuous-time external linear model in the form of the left 
polynomial matrix fraction with parameters recursively esti-
mated using a corresponding δ-model. The control configu-
ration with two feedback controllers is used. Both resulting 
continuous-time controllers are given by a solution of poly-
nomial  matrix  Diophantine  equations. Parameters of  the 
controller are periodically readjusted according to recursive-
ly estimated parameters of the δ-model. The controller pa-
rameters can be tuned by selectable poles of the closed-
loop as well as by parameters distributing weights among 
numerators of subcontroller transfer funktions. The presen-

ted method has been tested by computer simulation on the 
nonlinear model of two spheric tanks in series. The results 
demonstrate the applicability of the presented control stra-
tegy. It can be deduced that the described adaptive strategy 
is also suitable for other technological processes. 
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