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Abstract 
This article is presenting a method for simultaneous localization and mapping 
(SLAM) of mobile robots in six degrees of freedom (DOF). The localization and 
mapping task is equal to the registration of multiple 3D images into a common frame 
of reference. For this purpose, a method based on the Iterative Closest Point (ICP) 
algorithm was developed. The SLAM method originally implemented in this research 
was using solely 6DOF ICP based registration. The computing effort and the regis-
tration quality issues of such solution were examined and in order to accelerate and 
improve the quality of the time-demanding 6DOF image registration, an extended 
method was developed. The major extension is the introduction of a factorized regis-
tration, extracting 2D representations of vertical objects called leveled maps from the 
3D point sets, ensuring these representations are 3DOF invariant. The leveled maps 
are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data 
for the subsequent robust 6DOF ICP based registration. The extended method is 
presented in this article, followed by the evaluation using real 3D data acquired in 
different indoor environments, examining the benefits of the factorization and other 
extensions as well as the performance of the original ICP method. The factorization 
gives promising results compared to a single phase 6DOF registration in regularly 
structured environments. Also, the disadvantages of the method are discussed, 
proposing possible solutions.  

Keywords: navigation, mobile robots, simultaneous localization and mapping, Itera-
tive Closest Point algorithm 

 
Introduction  

The concept of navigation is as old as the human civiliza-
tion; it is connected to human migration and the develop-
ment of the means of transportation. In order to navigate 
themselves through miles of open ocean, the Polynesian 
sailors had to memorize extensive facts such as the motion 
of stars, weather influences and directions of swells. Euro-
pean explorers were initially using dead reckoning and 
slowly developed celestial navigation, using passive land-
marks (planets and stars) to find ship’s current position. 
Today’s navigation methods used in transportation are 
mainly dependent on artificial landmarks (such as beacons) 
or even active systems of moving landmarks (satellites).   

The development of navigation methods for mobile robots 
started in a similar way as the development of human navi-
gation: first robots used dead reckoning for pose estimation 
in known environment; further development of the robotic 
navigation went hand in hand with the developments in 
sensing technologies. Today, mobile robots are equipped 
with a variety of sensing devices such as cameras, range 
sensors (ultrasound, optical, microwave), tactile sensors, 
gyros etc. which allow the solution of the task of localization 
and exploration. The state of technology makes it possible 
for us to advance further with the theory and strategy to 
navigate the robot in the environment. Current sensing de-
vices are able to explore the surroundings of robots in such 
a precision and detail that the possibilities of using this in-
formation to navigate the robot are so far unused. In the 
current scientific discourse in the field of mobile robot’s 

autonomy and navigation, the use of three dimensional 
environment perception is slowly breaking through. This is 
the area on which the research focuses, trying to bring a 
new strategy and make use of new technological potential. 

The research documented in this article intended to cover 
some of the major challenges that are yet to be approached 
or further investigated in the navigation methods for mobile 
robots. The focus is on one of the most challenging ways of 
navigating mobile robots in unknown environments: using 
spatial 3D range measurements. The existing methods for 
localization and map building are very computing-power 
demanding especially due to the high data flow and difficult 
optimization tasks. Also quality issues are often to be re-
solved when working with real data. The work summarized 
in this article was aiming to innovate the state of the art in 
both aspects.  

In this article, the navigation method will be first discussed, 
focusing mainly on the details of the innovation. Also, since 
the method is based on the use of the Iterative Closest Point 
algorithm, this algorithm will be also presented before pro-
ceeding to the evaluation results. The main objective of this 
article is to introduce the reader to the developed method 
and to present the experiments which were carried out to 
evaluate the method. 
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State of the art 

The task of navigation in unknown environments implies 
three basic subtasks: localization, mapping and path plan-
ning [5]. These three subtasks correspond to the fact that 
we have to obtain information about the environment, find 
our position related to some frame of reference in the envi-
ronment, and decide where we should and where we are 
able to move and how to do it. This is a very complicated 
process consisting of data acquisition and preprocessing 
and various optimization tasks such as data registration, 
occlusion detection, error diffusion and optimal path plan-
ning. In our case the environment is apart from global char-
acteristics (such as gravity and other physical laws, possible 
presence of objects of known characteristics etc.) unknown. 
When designing a navigation system which operates in 
unknown environments, the first two subtasks – localization 
and mapping – can be treated as simultaneous processes. 
Since we have no prior map in which we are determining 
our position, in every moment we get some information 
about the environment, we update our maps and also our 
current position on this updated map. Thus the localization 
and map building form one procedure called simultaneous 
localization and mapping (SLAM).  In case of three dimen-
sional environments this task will be solved in six degrees of 
freedom (three translations and three rotations). Although 
the position of a mobile robot is expressed in six degrees of 
freedom, its possible trajectory is often limited by the terrain 
and ground constrains, thus allowing us only certain move-
ments and achievable locations. This is what makes the 
task of path planning of wheeled vehicles more difficult than 
e.g. path planning of an aircraft; on the other hand the prox-
imity of an observable environment allows the self-
localization with respect to the environment structures [3].  

When proceeding with SLAM in unknown environments, we 
have to measure new range information of the environment 
once in a while during robot’s movement in order to keep 
track of the current position and to expand the current map. 
The transformation of this new set of information (image, 
range data) into the original coordinate system (in which the 
built map is referenced) is called image registration and is 
serving for both purposes of SLAM (we compare the new 
data to the reference map and consequently we integrate it). 
Data registration is the key step in the SLAM algorithm op-
eration and in fact in this research, such registration method 
was developed and experimentally verified. 

Methods for registering two 3D images 

In order to explore the environment and to create a map 
which is representing the environment without occlusions, 
there have to be multiple scans taken from different per-
spectives. After each image is taken and the semantic ana-
lysis is performed, the data set has to be processed to ex-
pand the current map of the environment. This step is called 
image (scan) registration and the principle is that the current 
image has to be transformed into the original frame of refer-
ence. This step is based on finding the optimal rotation and 
translation for which the matching of the new scan into the 
global frame of reference with previous scans is most con-
sistent. This means that the point clouds in the new scan 
referring to environment areas which appear also in previ-
ous scans are as close as possible to the corresponding 
point clouds in the map. This rotation and translation in fact 
corresponds to the change in robot’s pose, thus the robot is 
localized in the global map of the environment after each 
image registration. The operation of scan registration 
(matching) is starting with initial values of the rotation and 
translation taken from the odometry of the vehicle, while the 
matching (registering) algorithm is from the localization point 
of view correcting the errors which have integrated from the 

vehicle’s odometers measurements. Here we can actually 
observe the meaning of the simultaneous localization and 
mapping since image registration serves to both purposes. 
The registration procedure is in general a minimization algo-
rithm, which minimizes the error caused by incorrect place-
ment of new scans into the global map based on global 
frame of reference. The error function E can be in general 
expressed as in equation (1), where R and t are the rotation 
and translation variables, M is a model set of previously 
scanned points and D is a data set of new points from the 
current scan.  
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The data registration can be done in an automated way 
using correspondence based methods. The mainstream in 
the 3D data matching is the use if Iterative Closest Point 
algorithm (ICP) proposed in 1992 by P. Besl and N.D. 
McKay [2]. In general, the ICP method is minimizing the 
least-square point correspondence sum (see equation 0) 
proposed by Arun et al. in [1]. This is done though finding 
corresponding points in data sets and building a special 
matrix from which the optimum rotation is calculated. The 
determined rotation is applied on the data and the whole 
process is done iteratively until the best (optimum) match is 
reached when the calculated rotation matrix is close to ones 
matrix. The method decouples the calculation of translation 
from the estimation of the rotation matrix. The navigation 
method proposed in this paper is using the Iterative Closest 
Point algorithm and therefore this method will be presented 
in a greater detail in next section. 

There are also other methods for minimizing the function 
expressed in equation 0. One interesting method is parallel 
evolutionary registration method proposed by Robertson 
and Fisher [12]. This method is using an evolutionary search 
while the chromosomes used in this search consist of six 
parameters: three angles representing the rotation of the 
system and three compounds of the translation. First the 
chromosomes are initialized using a random function. This 
is followed by the evaluation of the fit function, the results of 
which are used in the following phase: adapted crossover 
and mutation. In the algorithm, there are in fact parallel 
processes for the evaluation of the fit function accelerating 
the computation for the whole population, since this could 
be seen as a bottleneck of the algorithm. The criteria – fit 
function is in fact very similar to the one used in the ICP 
algorithm and comes from Arun’s publication on Least-
squares fitting of two 3-d point sets [1]. Hence the nearest 
neighbors have to be determined in order to calculate the fit 
function: in this matter the evolutionary search algorithm is 
limited by the time demanding nearest neighbor search 
which also appears to be the bottleneck of the ICP based 
methods. 

Iterative Closest Point Algorithm 

As already mentioned, the image registration is from the 
computational point of view the most complicated task of all 
processes in three dimensional mapping and model build-
ing. In order to align multiple datasets, the algorithm natu-
rally requires processing of all data points in an organized 
way; since the sets in case of 3D images contain thousands 
of points, this process could be very computing-effort de-
manding. 

The Iterative Closest Point (ICP) algorithm is an iterative 
aligning algorithm, as already mentioned it was first pro-
posed in 1992 by P. Besl and N.D. McKay [2]. The applica-
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tion of this algorithm in 6DOF SLAM by Fraunhofer AIS 
institute is very comprehensive and it inspired the early 
development of the SLAM method presented in this article 
to great extent [9].  The algorithm serves to merge new 
scans into one – reference – coordinate system. Let’s as-
sume that we have a data set D as it is defined in the equa-
tion (1), which is partly overlapping with the existing model 
M .  

As stated in previous section, the criteria function which is to 
be minimized is a function E. In the case if ICP, this function 
is expressed in equation (2), where wi,j is 1 if the point dj in 
D describes the same point as mi in M (the points are corre-
sponding), otherwise it is set to 0.   
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In each iterative step, the algorithm selects closest points as 
corresponding and calculates the transformation (R,t) ac-
cording to the minimization of E(R,t).  

There are four known methods for the minimization of this 
function [9]. Easy to implement are quaternion based 
method and singular value decomposition method (SVD). 
Both are applied by Fraunhofer AIS, in later work SVD is 
preferred due to its robustness and an easy implementation 
[9]. The algorithm supposes decoupling of rotation R from 
translation t which is done by using centroid points given in 
equation (3). 
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In order to minimize the rotation matrix R, a matrix H has to 
be created. This matrix is defined as in equations (4) and 
(5). Its elements Sxx,...,Szz have to be calculated by multiply-
ing the corresponding model and data points (these are the 
closest points). The H is calculated as in equation (6). 
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After obtaining the matrix H, it has to be decomposed e.g. 
using singular value decomposition method:  

TVUH Λ=  (6) 

The final R is calculated in equation (7), where the matrices 
U and V are obtained by a singular value decomposition of 
matrix H.  Final translation t is derived from equation (8).  

TVUR =  (7) 

dm Rcct −=   (8) 

The most time and computation demanding task of the ICP 
method is the determination of the closest points necessary 
for calculating the elements of matrix H. Using brute force, 
this is a task of searching for the closest points results in a 
complexity O(n) single steps given the number of points n; 

the total processing time is in the order of tens of hours 
when using current computers. Though there are methods 
to speed up the search of corresponding points, commonly 
used in 3D graphics programming. Majority of them is based 
on the structuring of point clouds using planes, thus creating 
a tree structure. Nuchter et al. are using octrees, box de-
composition trees and kd-trees for accelerating the search 
[10]. The kd-trees are a generalization of binary trees, 
where every nod represents a partition of a point set to the 
two successor nodes. Nuchter et al. have optimized kd-
trees, so that the buckets are being chosen in such a way 
that the separating planes create two subgroups of equal 
amounts of points and the planes are also perpendicular. 
The algorithm of searching for the closest point is iterative, 
the point is compared to the separating plane and the deci-
sion about the direction of searching is determined from this. 
The implemented kd-tree acceleration reduces the search 
space and this can be expressed in the big O notation as 
O(nc) where 0 < c < 1. 

After estimating the optimum rotation of the data set, the 
centered data points are rotated using this matrix and the 
iterative closest point algorithm is run again. The optimum 
state is reached when the rotation matrix output from the 
SVD or quaternion based evaluation is close to ones matrix, 
therefore the data set is not to be transformed any further. 
Therefore the iterative character of the ICP is in the iterative 
running of the process to find the rotation matrix which is 
used for rotating of the centered data. The method finishes 
when the output rotation is not transforming the data any 
further and this state is expected to be the optimum.  

Performance considerations 

In the registration of two range images using an ICP based 
method, data points are iteratively used to find a corre-
sponding point in the model set. This is obviously the most 
challenging part of the registration algorithm from the com-
puting effort point of view. The search can be accelerated by 
limiting the search space using tree structures or by projec-
tions of data points to model surfaces. Accelerations of 
other parts of the ICP algorithm are less likely to benefit the 
overall computing requirements of the method. The only 
other iteratively performed task is the estimation of the opti-
mum rotation matrix R either using a quaternion based 
method or using the singular value decomposition method. 
This task though requires computing time of approximately 
one to two lower orders compared to the building of matrix H 
though finding the correspondences.  The inevitable prob-
lem in computing requirements of the ICP based 6DOF 
SLAM is therefore the search for the correspondences. The 
difficulty of such task is proportional to the number of points 
for which the closest point search has to be performed and 
the number of iterations which have to be done to find the 
optimum. In 6DOF SLAM, the size of the 3D data sets is a 
major factor.  Also, the time required for the optimization is 
very close to be directly proportional to the number of itera-
tions of the ICP algorithm. One can therefore distinguish 
three major ways of improvement of the 6DOF SLAM ICP 
based methods: first, which is partly indirect, is to reduce the 
overall number of iterations of the ICP algorithm. This can 
be done if we ensure that the two point sets are somehow 
pre-aligned so that these are close to the optimum match. 
The iterative closest point algorithm has to perform less 
iterations and this could save the processing time. Second 
major way to improve the time required for matching the 
sets is the acceleration of the closest point search. This 
approach can be seen e.g. in the Fraunhofer team’s re-
search and the improvements are quite significant [9]. The 
last way of reducing the computing effort requirement would 
be a complex and robust data reduction. Data reduction 
could though introduce system error since the registration 
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would be performed on the simplified data set, neglecting 
details in the scans.  

Platform development 

The most common method of measuring range data in 3D is 
the use of inclined 2D time of flight based laser range-
finders. Time of flight (TOF) ranging systems determine the 
range by measuring the time required for a pulse of emitted 
energy to travel to and from an object which is expected to 
reflect the emitted energy. Due to the precision and avail-
ability of laser based TOF sensors, these are now dominat-
ing the use in mobile 3D perception. SICK LMS 200 sensor 
was selected in this research as it is capable of data acqui-
sition at scanning frequency of 75 plane scans per second, 
transmitting 180 values for each scan with angular range of 
180 degrees and resolution 0.5° (even scans start at 0° and 
odd at 0.5°, with 1° step between values). The maximum 
distance range of the scanner is 80 meters and the system-
atic error at the distance of eight meters is ±15 mm. 

In order to measure distances in three dimensions, the sen-
sor has to be moved or inclined while scanning the planar 
ranges. In this research, the objective was to develop a 
robot-independent platform, which could be installed on 
different robot platforms available at our department. The 
orientation of the scanner in such platform was also an 
issue: the analysis performed by Wulf et al. concluded that 
the orientation of the scanner is very influential on where the 
highest density of scanned points would be [14]. In each 
application, this highest point density area should be di-
rected to the area of interest, which in case of this research 
would be in front of the robot. This would imply the rolling 
inclination of the scanner, though there were other criteria 
which were influencing the selection of the inclination met-
hod. A very important factor was the field of view. Another 
aspect was the possibility of 3DOF SLAM use during the 
movement of the robot which requires horizontal alignment 
of the scanning plane with the ground. Taking all these 
factors into account, the “pitching” inclining method was 
selected: the principle of the pitching inclined mechanism 
can be seen on the platform equipped robot in Fig. 1. The 
actuating device powering the inclining mechanism is a DC 
motor equipped with an incremental sensor. The main op-
eration regime is precise angular velocity regulation, mean-
ing that the scanner is continuously inclined. The resulting 
3D image in case of continuous inclination is not in the regu-
lar matrix form since the measured points are positioned as 
if the scanned lines were tilted.  

The 3D range scanning system was accustomed mainly for 
one experimental robot: Universal Telepresence and Auto-
nomous Robot (UTAR). This robot was developed espe-
cially for experimental objectives. Most of its components 
were upgraded during this research. The robot can operate 
in both interior and exterior environment, allowing move-
ment in light terrain (the maximum height of an obstacle is 
ten centimeters). Its maximum velocity is two km/h; the 
drivers are digitally controlled, allowing readings from in-
cremental encoders connected to both motors. It is equip-
ped with an industrial PC and the communication is per-
formed by a WiFi MIMO module. Another robot which is 
being used for the 3D scanning is the HERMES omni direc-
tional platform based robot. The mechanism of this scanning 
platform is using a servo motor for inclining the sensor. This 
platform is also suitable for experiments since it allows mo-
vement of the robot in three degrees of freedom. UTAR 
robot is shown in Fig. 1. 

 
Fig. 1: UTAR robot equipped with the inclining platform 

Two stage leveled map  
accelerated 6DOF SLAM 

A block diagram of the developed extended navigation met-
hod is shown in Fig. 2. In this diagram one can differentiate 
three main parts of the navigation system. The first part is 
naturally the sensor subsystem, using the above described 
scanner and inclination module. Then in the second part 
(not highlighted in the diagram), the 3D data are preproc-
essed and reduced. The SLAM core is the next step of the 
navigation method and it is highlighted in the Figure. This is 
the part where the major innovation takes place; its details 
will be explained in the following sections. The output from 
the SLAM core is the localization of the robot in six degrees 
of freedom (roll, pitch, yaw angles and x, y, z translations) 
and the created model of the environment could also be 
perceived as an output. 

As previously stated, the major issue from the computing 
effort point of view is the number of closest point correspon-
dences which are to be found when performing the 6DOF 
registration. In this research the main concern was to im-
plement such means that the robustness of the 6DOF ICP 
would be preserved while the number of iterations in this 
time-demanding step would be reduced. In this method the 
model of the system composes of two sub-models: the lev-
eled map model and the 3D environment model. This corre-
sponds to the fact that the SLAM core composes of two 
phases: in the first phase, 2D leveled maps are extracted 
(factorized) from the 3D data and these are registered in a 
3DOF ICP based matching algorithm. The registration is 
therefore initially done in fewer dimensions and thus fewer 
degrees of freedom, decoupling the registration in certain 
degrees of freedom from the overall robust but slow 6DOF 
SLAM. The 3D data are then transformed according to the 
results in 3DOF and passed to the robust 6DOF ICP based 
matching algorithm. 

Factorizing the task 

Factorization as a term relates to multiple areas of mathe-
matics. Simple factorization is in fact a decomposition of an 
object into a product of other objects or factors. Similarly, in 
statistical analysis, factor analysis is a method which is 
widely used for determining or reducing the number of di-
mensions - variables - which are influencing the measured 
characteristic. The method presented in this article - de-
composition of the 6DOF registration problem into two sepa-
rate tasks, reducing the number of dimensions in the first 
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step - follows both patterns in which the term factorization 
has been constituted. The factorization itself in this research 
is based on detecting such characteristics in the environ-
ment that the task of the localization can be decomposed 
into two separate phases. If such decomposition is expected 
to bring positive performance change, the dimension reduc-
tion must significantly reduce the effort necessary for the 
competition of the registration task. 

In this solution, one aspect of the physical environment is 
being used to decouple the 3DOF registration from the 
6DOF SLAM: the gravity. It is quite easy to measure the 
robot’s pose in two degrees of freedom: the pitch and yaw 
inclination. These are easy to measure when the robot is 
still, which is the case when acquiring 3D images. Since we 
can measure these angles, the 3D data can be pre-aligned 
so that the two dimensional data which are to be extracted 
for the 3DOF SLAM can be independent on the pitch and 
roll inclination of the robot. This 2D extracted data set used 
in this research was called leveled map since it is aligned 
with the horizontal plain. In other words the leveled map 
created from the 3D data is invariant to the pitch and yaw 
inclination of the robot since we can measure these angles 
and align the 3D data in these two degrees of freedom be-
fore the extraction. Then we have to ensure that the 2D 
leveled map is also invariant to the remaining degree of 
freedom – the z (“upward”) translation. This implies the type 
of objects extracted into the leveled map - vertical objects. It 
is assumed that the environment has such characteristics 
that in most times the robot will be able to see vertical ob-
jects in all heights (that is z translations), therefore the ex-
tracted leveled map will be independent on the robot’s pose 
in terms of z translation. This actually holds true for most 
single-floor indoor environments and also for some outdoor 
environments.   

The decoupled three degrees of freedom are therefore the 
remaining DOFs: horizontal translations x and y and the yaw 
angle ψ. In the first phase of the registration, these three 
degrees of freedom are registered. The leveled map extrac-
tion is described in more detail in the previous publication of 
EUROS robotics symposium and can be found in [6]. Briefly, 
the vertical structures are extracted by first splitting the data 
into vertical columns, which is followed by a search for equi-
distant obstacles within the columns. This process is pow-
ered by Combsort sorting algorithm. 

When the leveled 2D map of vertical objects is constructed, 
it is passed to the 3DOF ICP algorithm. First, the leveled 
maps have to be centered using the computed centroids. In 
order to accelerate the search of the closest points in the 
ICP algorithm, a kd-tree is built for the leveled model set 
and then closest points of the leveled data points are que-
ried. The kd-tree implementation uses splitting rules pro-
posed and implemented by D. Mount and S. Arya in [8]. 
After the closest points are determined, the matrix H is cal-
culated and finally the rotation R is obtained using the SVD 
algorithm. This is iteratively repeated until the rotation matrix 
is close to the ones matrix (the criteria set for this state is 
when each non-diagonal element is smaller than a preset 
limit ε). After this is fulfilled, the final rotation (which is the 
product of the particular rotation matrixes from all iterations) 
is determined and also the translation is computed. All steps 
are identical to the Iterative Closest Point algorithm de-
scribed earlier. The result from this ICP registration is the 
rotation and translation in 3DOF (yaw angle – rotation 
around z axis, x and y translation). The reduction of the 
dimension is to significantly reduce the number of points for 
which the closest points are to be found when compared to 
registering of 3D data sets. That should naturally reduce the 
time required for the calculation of the H matrix. 
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Fig. 2:  Block diagram of the navigation system 

Registering the pre-aligned 3D data 

After the matching of the leveled map, the obtained estimate 
of the yaw rotation is applied to the 3D data set. Since the 
ICP works with centered data sets, the application of the 
translation is not necessary at this point. The input 3D data 
should also be aligned in the two rotation angles: the roll 
angle and the pitch angle. These were also the source of 
information for the leveled map building and are necessary 
for this method to accelerate the classical ICP. The two 
angles correspond to the inclination of the robot and could 
be easily measured in any environment where gravity is 
present. The pre-alignment is applied on the data set by 
applying the rotation on each of the data points. This trans-
formation is expected to significantly reduce the number of 
iterations in which the following registration method is to 
determine the optimum rotation and translation to correctly 
match the data set to the model. The ICP algorithm is ap-
plied on the 3D data. Initially, data are centered and a kd-
tree is built for all model points, using the sliding midpoint 
splitting rule proposed as in the leveled map matching, pro-
posed and implemented in [8] by D. Mount and S. Arya. The 
optimal rotation R is iteratively calculated, finally resulting in 
the full 6DOF match of the data. Then the data can be used 
to expand the overall model of the environment. 

Unique matching of model points  
in the closest point search 

The originally implemented one-phase ICP algorithm had to 
be modified according to quality issue which was encoun-
tered when evaluating the “simple” ICP based registration. 
The problem which had to be dealt with is in the fact that the 
theoretical iterative closest point algorithm supposes that 
there are corresponding points in the data pairs and also the 
number of points corresponding to the same physical ob-
jects in the environment is identical for both point sets which 
are being registered. Point density correction algorithm was 
not implemented in this research due to loss of information 
reasons. Therefore the point density is changing with re-
spect to the distance of objects from the scanner; due to the 
spherical character of the beam spread this density reduc-
tion is very significant. One cannot assume that the scans 
will be acquired from reasonably close locations as this 
would undermine the whole task of localization in unknown 
environments: the robot’s movement in this environment 
would be limited by the poses from which the scans are to 
be acquired. This situation is also problematic in areas 
where in two point sets we are looking for closest points of 
points which are close to the border of the overlap of the 
sets. In this case, it could happen that for the data points 
which do not have real correspondences in the model 
(meaning that the objects represented by the data are not 
present in the model set), correspondences of closest points 
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will still be found but will introduce significant errors as the 
real correspondences do not exist. Such situation could be 
avoided if the overlaps would present 100% of the sets, 
meaning that the overlap would be known and the transfor-
mation of the sets could hence be determined, therefore the 
registration would be no longer necessary. This is though 
not a realistic solution.  

A possible solution to this problem is the establishing of a 
mechanism which enforces the uniqueness of the use of 
model points in the closest point queries. Such mechanism 
was implemented in the navigation method and it has be-
come part of the closest point query. It works according to 
the following principle: when a closest point is found, it is 
first checked whether it has already been allocated for an-
other - previous query. If this is true, the distance between 
the queried points and the closest point are compared and 
the queried point which is closer to the found closest point is 
registered in the records of found closest points. The matrix 
H is therefore updated at the end of the overall process of 
finding closest points for the data. Otherwise the matrix 
would already reflect the previously added points which 
would sometimes (in case a closer data point was queried) 
no longer be valid and it would have to be corrected to 
drawback the previous update. This modification is not with-
out an impact on the time-wise performance of the ICP 
algorithm.   

Experiments 

Multiple experiments were carried out to verify the perform-
ance of the method from two main perspectives: one is the 
computing effort which is required to match model and data 
range images, second perspective is the quality perform-
ance of the method. The experiments will be structured in 
the following way: first, an analysis under close-to-artificial 
conditions will be discussed, evaluating the performance of 
the method under predefined close-to-optimum conditions. 
This analysis is though based on data acquired in real envi-
ronment. The following three evaluations will represent three 
different environment model conditions. These correspond 
to the changing difficulty of the image registration task. The 
three evaluation environments were selected with regards to 
the expected weaknesses of the developed method: the 
main changing attribute of the environments is the structur-
ing factor - the presence of vertically consistent structures in 
the environment. Another aspect is the presence of ran-
domly scattered objects and the last and most challenging 
aspect is the horizontal structuring of the environment 
meaning the presence of multiple floor zones. 

Real data with arbitrary transformation 

The experiments usually start by testing of the implemented 
methods on artificially created objects. The reasoning be-
hind this strategy is that for such artificial objects, one 
knows the correct solution (the ground truth) and therefore 
method’s performance compared to the ground truth solu-
tion can be assessed. One way to do this would be creating 
an artificial point cloud with known characteristics, applying 
a known homogenous transformation on this point cloud and 
registering the original and the transformed one. The disad-
vantage of such step would be that the object would most 
likely not contain characteristics of real environments in 
which the method would be expected to function when in 
real operation. For this reason, a real 3D image was used 
instead of an artificial one. A known homogenous transfor-
mation was applied to this point cloud and the created and 
original point clouds were then registered. Since such point 
clouds contain equal number of points from the same mea-
surement and there are ideal corresponding pairs for all 

points of both sets, the mentioned ideal ICP application 
conditions are fulfilled and the method should perform as 
ideally. The performance is expected to be the same as for 
the artificial object – the point clouds should be registered 
using the same but opposite homogenous transformation to 
the one applied on the point cloud. For the testing real point 
cloud, an office environment was selected since it contains 
both vertical structures (walls, furniture) and also scattered 
object of various types. The data set for this experiment 
contained approximately 33 thousands of points after re-
moving inclining construction from the 3D data. This data 
set contains an office room with open door and a small part 
of a hallway. 

The first experiment was to confirm the correct functioning 
of the ICP algorithm. This test was passed successfully as 
the calculated translation or rotation was an inverse of the 
initially applied transformation. The next step was the testing 
of the computing time and number of ICP iterations depend-
ency on the scale of transformation between the model and 
data sets. Since the translation is decoupled from the itera-
tive algorithm, the manipulated transformation was rotation 
around z axis. The dependency of the registration duration 
on the scale of the rotation between model and data point 
sets for different algorithm configurations is shown in Fig. 3 
(the evaluations were performed on a Pentium M 1.8 GHz 
machine). One can observe that the number of iterations of 
the ICP registration and the overall computing time when 
factorization using leveled maps is not introduced in the 
algorithm can be approximated by a logarithmic function. 
When leveled maps are introduced, the number of iterations 
as well as the computing time is constant for all scales of 
rotation. The scale of the acceleration when the factorization 
is introduced gradually grows as the registration duration 
using 6DOF ICP only rises, resulting in a significant per-
formance improvement for transformations over approx. 4°. 
When uniqueness of model points use in the closest point 
search is introduced, the duration of the registration almost 
doubles, although since in this experiment the conditions 
are ideal, quality improvement is simply not possible (all 
matches are perfect). 

y = 5288.8Ln(x) - 1457.3
R2 = 0.9275

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60

Rotation angle [°]

6D
O

F 
IC

P 
re

gi
st

ra
tio

n 
du

ra
tio

n 
[m

s]

6DOF ICP only, uniqueness of model points use enforced
6DOF ICP only, uniqueness of model points use not enforced
Accelerated by leveled maps, uniqueness of model points use enforced
Accelerated by leveled maps, uniqueness of model points use not enforced
Logarithmic (6DOF ICP only, uniqueness of model points not enforced)

 
Fig. 3: Duration of the 6DOF ICP registration as a func-
tion of the applied transformation’s rotation angle 

Experiments in real operation 

After verifying the method on real data using arbitrary trans-
formation to create two registered sets, the method was 
verified using again real data (measurements of real envi-
ronments) though this time the transformation took place 
physically in the environment – moving and rotating the 
scanning platform. The experiments were carried out in four 
different physical environments: a hallway with simple verti-
cal structuring and absence of reflective materials, an office 
environment with transparent and reflective materials and 
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scattered objects, a laboratory environment with many scat-
tered objects creating occlusions and finally in a multi-level 
environment with reflective materials and scattered objects 
enclosed by iron bar. 

Hallway environment 

The hallway environment structuring contains regular verti-
cal planar patterns. The size of the vertical planes present in 
the environment is much higher than the resolution of the 
scanner. Ten scans were taken in this environment, using 
different transformations between acquiring model and data 
sets (both translations and rotations). For most pairs, “sim-
ple” 6DOF ICP based SLAM converged to and optimum 
which was relatively close to the ground truth (measured at 
the time of data acquisition), although the different angle of 
view and varying point densities between the data and mo-
del sets  have introduced an error in the registration. Such 
error was eliminated when the uniqueness of the model 
points use in the closest point search was enforced.  The 
impact on the computing time of the registration was signifi-
cant; the difference in the quality of the resulting match can 
be seen in Fig. 4. The difference was especially visible in 
the rotation determination, where the uniqueness of model 
point’s use introduced a significant improvement. For all 
measured point set pairs, the computing effort requirements 
were compared between the original 6DOF ICP based 
SLAM and the implemented acceleration based on the fac-
torization of the algorithm using leveled maps. An example 
of leveled maps of the hallway environment (registered and 
unregistered) is shown in Figures 5 and 6. The improvement 
of the computing time requirement when leveled maps were 
introduced varied for five of the range image pairs between 
14% and 46% (in average 28%). There was one case where 
the introduction of leveled maps decelerated by -8%. This 
outlier was in fact a pair where the model and data sets 
were transformed only applying translation to the scanning 
platform. This actually appeared to be the weakness of the 
ICP based method since the centroids calculated to deter-
mine the translation were not representing identical part of 
environment given the varying density, point of views etc. 
This error was partly overcome in leveled maps by introduc-
ing a two pass extension where the data were filtered based 
on the first registration, partly eliminating the objects present 
only in one of the sets and correcting the centroids. Such 
solution is though increasing the computing time especially 
if implemented in the 6DOF registration.  

 
Fig. 4: Hallway experiment: unregistered point pairs 
(left); registered solution without model point use uni-
queness (middle) and registered solution with unique-
ness introduced (right) 
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Fig. 5: Unregistered leveled maps of the hallway 
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Fig. 6: Registered leveled maps of the hallway 

Laboratory and office environments 

The following two experiments have shared some character-
istics of the environment: both the laboratory and office 
environments contained plenty of structured objects of ir-
regular shapes. In the laboratory environment, these objects 
actually blocked a significant part of the scanner’s viewing 
angle. To verify the behavior of the method, two pairs of 
data were acquired and registered for both the office room 
and the laboratory. The difference between the two pairs 
was in the scale of the transformation applied on the scan-
ning platform. For the first pair, a rotation of approx 20° 
(resp. 15° for the laboratory) was applied and for the second 
pair a rotation of 45° (resp. 35° for the lab) was applied. The 
translation between sets within a pair was within the esti-
mated accuracy of odometry – maximum 0,5 m. The results 
were ambiguous: for the first pair in both environments, the 
registration was partly successful. The quality of the match 
for the office was perfect rotation-wise but error was intro-
duced by erroneous determination of the translation. The 
results of the registration are presented in Fig. 7. The dura-
tion of the registration was 57 s using factorization and 73 s 
using pure 6DOF ICP SLAM (both with uniqueness of model 
points’ use in the closest point search). The result for the 
laboratory environment was partly acceptable: the rotation 
around z axis was determined correctly but the solution was 
also rotated around y axis – this introduced errors. The 
registration of second pairs with larger transformation re-
sulted in only partial registration for the office room and 
again partly erroneous registration in the lab. In the office, 
the transformation of 45° in the second pair was beyond the 
capabilities of the implemented method. Leveled maps have 
not significantly accelerated the registration of the two scan 
pairs acquired in the laboratory, this is most likely due to the 
occlusions and structuring of the environment. 

35AT&P journal  PLUS1 2008

RIADENIE MOBILNÝCH ROBOTOV



 
Fig. 7: Registration of data sets acquired in office envi-
ronment: scale of rotation approximately 20° (left: un-
registered; right: registered) 

Multi-floor environment with difficult structuring 

In the last experiment presented in this article, 3D range 
data were acquired in an environment which was expected 
to be extremely difficult for the registration using both the 
original and the extended method: a multi-storey area with 
stairway and various objects of irregular shapes in the view 
of the scanning platform. Also, the stairway was lined with a 
glass border, possibly introducing multiple reflections de-
pending on the angle of incidence of the laser beam. An-
other feature of the environment was a presence of bars 
which were enclosing the scattered objects in the bottom 
part of the scans, resulting in regular structuring of the 3D 
data sets in this part of the image. In the first experimental 
data acquisition, the transformation applied on the platform 
between acquiring the model and data sets was a rotation 
around z-axis direction of approximately 15°. The registra-
tion when using leveled maps took approx. 203 ms, per-
forming ten ICP iterations in the 3DOF SLAM. The rotation 
determined by this 3DOF SLAM was of approximately 18°, 
the data set was therefore slightly “over-rotated”. This is 
shown in Fig. 8. The subsequent registration in 6DOF after 
pre-aligning the sets took approximately 46 s, completing 33 
ICP iterations and determining rotation of 21°, again over-
rotating the solution. When using the simple 6DOF ICP 
based SLAM without factorization, the registration took 
approx. 100 s, completing 72 ICP iterations and reaching 
same solution. The acceleration in this case was quite sig-
nificant; the quality of the match was though limited. The 
second pair of point clouds was acquired by applying rota-
tion around z-axis of approx. 45°, for this pair the registra-
tion encountered a local minimum before reaching the cor-
rect solution. The leveled maps have diverged from the 
correct solution. Such transformation is therefore beyond 
the capabilities of the implemented method especially due to 
the character of the environment. 

 

 

  
Fig. 8: Multi-storey environment data and model sets: 
transformation approx. 15° rotation around z-axis direc-
tion; (left: unregistered; right: registered) 

It has to be noted that for all experiments where the use of 
the feature enforcing uniqueness of model points use in the 
closest point search is not explicitly mentioned, the feature 
was enabled during the registration. This is because it sig-
nificantly improves the quality of the registrations. 

Conclusion 

The implemented navigation method is in fact a hybrid two 
stage solution which uses factorization to accelerate the 
method for simultaneous localization and mapping in 6DOF. 
This is done by extracting 3DOF invariant vertical structures 
(landmarks) from the 3D data, creating a 2D map of vertical 
objects and registering these in 3DOF prior to the robust 
and computing time demanding registration in 6DOF. The 
aim of such modification was to pre-align the 3D data in 
3DOF and to reduce the time required for the 6DOF SLAM 
algorithm in this way while preserving the robustness of the 
original 6DOF ICP based method. The practical implemen-
tation of such a method requires use of accurate and inex-
pensive technologies of gravity vector measurement, initially 
aligning the data with a horizontal plane by hardware me-
ans. Selecting vertical structures for extraction ensures 
maximum height invariance of the created 2D data for the 
3DOF registration. Features focusing on the quality of the 
final registration were also implemented within the method, 
such as the enforcement of uniqueness of model points use 
in the closest point search of the ICP algorithm. This partly 
eliminated the errors introduced by occlusions and different 
fields of view of acquired images. The closest point search 
was also accelerated using kd-trees. 

Overall, one can conclude that the implemented method 
gives very promising results in terms of the expected ICP 
behavior. This means that when factorization described in 
this article is introduced in the SLAM method, the quality 
and robustness of the 6DOF ICP based SLAM is preserved 
and the overall registration process is often significantly 
accelerated. In ideal conditions and in vertically structured 
environments, the implemented method is of a great benefit 
in terms of the computation power requirements. Also, the 
leveled maps can be used as a separate mapping output 
since these maps depict the vertical structuring of the envi-
ronment and may be viewed as reduced 2D maps. The 
difficulties of the implemented 6DOF SLAM are tightly con-
nected to the general issues of the ICP use in the SLAM 
algorithms. On one hand the navigation method preserves 
the robustness of a general 6DOF ICP based SLAM but on 
the other hand it also shares the disadvantages of the ICP. 
The issues seem to be appearing when registering images 
of randomly and finely structured environments and also in 
registrations where the scale of transformation between the 
data and the model sets is too large. In both mentioned 
situations occlusions are present in the point clouds and 
there are also objects appearing only in one of the sets 
which are being registered, sometimes introducing error in 
the rotation determination but much more often in the trans-
lation calculation. The calculation of translation between the 
point clouds seems to be the most important issue of the 
ICP based method as resolving it within the ICP framework 
appears to be difficult. 

In the continuation of this research, this issue could be re-
solved by introducing other than ICP based registration 
method into the navigation system solely to help to deter-
mine the correct translation. Other option would be the de-
velopment of a data reduction method which would initially 
determine common objects in data and model set and also 
correct the areas with uneven point density. 

The implemented navigation method is though not expected 
to be operating as a standalone module on which the robot 
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would be completely reliant. The research in the Laboratory 
of Telepresence and Robotics builds on the development of 
a modular system applicable on different robots allowing 
multiple configurations and levels of autonomy and teleop-
eration support. This is mainly due to the fact that teleopera-
tion is still one of the most practical ways in which the robot 
can fulfill complicated tasks yet unsuitable for autonomous 
regimes. The current state of this research now allows the 
implementation of the developed and experimentally verified 
navigation method in the existing robot prototypes, support-
ing teleoperation and mapping in unknown environments. 
The module is expected to provide 3D images for the HUD 
displays of the operator’s console. The localization informa-
tion will be combined with other pose calculations e.g. com-
ing from the inertial navigation subsystem and GPS module 
correcting the errors such as translation offsets and will 
inform the operator about the robot’s position. The reliance 
on multiple systems is in fact the major advantage of the 
interconnected modular approach to navigation. 
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