
Information fusion
for process control

Ľubomír Petrovič, Ladislav Jurišica

Abstract

The paper presents issues of information integration and information fusion for proc-
ess control. At first primary requirements for sensor system and categories for sen-
sor types are described with analysis of sensor configuration types. New approaches
for system design with information integration in different time models are described.
In conclusion we describe architectures and models for information integration.

Key words: information integration, sensor fusion, real-time systems, time triggered
systems, event triggered systems, information integration architectures and models.

Introduction

Present applications, such as industrial, medical, military,
application for safety and transportation applications depend
on embedded computer system that interact with the real
world. Especially dependable reactive systems that have to
provide a critical real-time service need carefully design and
implementation. There is need to consider four basic re-
quirements:

Requirements for sensors: Due to limited resolution,
cross-sensitivity, measurement noise, and possible sensory
deprivation, an application may never depend on particular
sensor information.

Real-time requirements: In many cases, operations have
to be carried out with respect to real time. Timing failures in
such applications may endanger operator and machine.

Dependability requirements: Since embedded systems
are often integrated into larger systems that depend on
embedded subsystems, the embedded systems have to be
designed and implemented in a way that they provide a
robust service. An embedded system might have to provide
a particular service even in case of failure of some of its
components. Such fault-tolerant behavior requires a proper
design of a system with regard to the possible failure modes
of its components.

Complexity management requirements: There is often
need to split a complex system, such as the software of a
robot with distributed sensors and actuators, into small
comprehensible subsystems in order to ease implementa-
tion and testing.

Information integration – current state

There is confusion in the terminology for fusion systems.
The terms "sensor fusion", "data fusion", "information fu-
sion", "multi-sensor data fusion", and "multi-sensor integra-
tion" have been widely used in the technical literature to
refer to a variety of techniques, technologies, systems, and
applications that use data derived from multiple information
sources.

Fusion applications range from real-time sensor fusion for
the navigation of mobile robots to the off-line fusion of hu-
man or technical strategic intelligence data.

Several attempts have been made to define and categorize
fusion terms and techniques. For example: "data fusion" can
be used as the overall term for fusion. However, while the
concept of data fusion is easy to understand, its exact
meaning varies from one scientist to another. A literal defini-
tion of information fusion can be found at the homepage of
the International Society of Information Fusion [ISIF]. ISIF is
a organization that associates scientists oriented to area of
information integration. This organization defines informa-
tion fusion as:

Information Fusion encompasses theory, techniques and
tools conceived and employed for exploiting the synergy in
the information acquired from multiple sources (sensor,
databases, information gathered by human, etc.) such that
the resulting decision or action is in some sense better (qua-
litatively or quantitatively, in terms of accuracy, robustness,
etc.) than would be possible if any of these sources were
used individually without such synergy exploitation.

By defining a subset of information fusion, the term sensor
fusion is introduced as:

Sensor Fusion is the combining of sensory data or data
derived from sensory data such that the resulting informa-
tion is in some sense better than would be possible when
these sources were used individually.

Categorization of sensor
configurations types

In general sensor systems can be created from many differ-
ent types of sensors which information and data format are
also different. There is need to combine these data formats
into one readable format. Applications have to be designed
in the way of independency, because each sensor can be
depended on another sensor. If one of system sensors
crash other sensors have to fully or partly represent work of
broken sensor.

Sensor fusion networks can also be categorized according
to the type of sensor configuration. Durrant-Whyte [Dur-
rant88] distinguishes three types of sensor configuration:

45AT&P journal PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE

Complementary: A sensor configuration is called comple-
mentary if the sensors do not directly depend on each other,
but can be combined in order to give a more complete im-
age of the phenomenon under observation. This resolves
the incompleteness of sensor data. Sensor S2 and S3 in
figure 1 represent a complementary configuration, since
each sensor observes a different part of the environment
space.

Competitive: Sensors are configured competitive if each
sensor delivers independent measurements of the same
property. There are two possible competitive configurations
- the fusion of data from different sensors or the fusion of
measurements from a single sensor taken at different in-
stants. Competitive sensor configuration is also called a
redundant configuration [LuoKay89]. A special case of com-
petitive sensor fusion is fault tolerance. Fault tolerance re-
quires an exact specification of the service and the failure
modes of the system. In case of a fault covered by the fault
hypothesis, the system still has to provide its specified ser-
vice. Sensor S1 and S2 in figure 1 represent a competitive
configuration, where both sensors redundantly observe the
same property of an object in the environment space.

Cooperative: A cooperative sensor network uses the infor-
mation provided by two independent sensors to derive in-
formation that would not be available from the single sen-
sors. An example for a cooperative sensor configuration is
stereoscopic vision - by combining two-dimensional images
from two cameras at slightly different viewpoints a three-
dimensional image of the observed scene is derived. Sensor
S4 and S5 in figure 1 represent a cooperative configuration.
Both sensors observe the same object, but the measure-
ments are used to form an emerging view on object C that
could not have been derived from the measurements of S4
or S5 alone.

Fig.1. Competitive, complementary,
and cooperative fusion

These three categories of sensor configuration are not mu-
tually exclusive. Many applications implement aspects of
more than one of the three types. An example for such hy-
brid architecture is the application of multiple cameras that
monitor a given area. In regions covered by two or more
cameras the sensor configuration can be competitive or
cooperative. For regions observed by only one camera the
sensor configuration is complementary

Real –time systems

A real-time system consists of a real-time computer system,
a controlled object and an operator.

 Fig.2. Parts of a real-time systems

A real-time computer system is a computer system in which
the correctness of the system behavior depends not only on
the logical results of the computations, but also on the phys-
ical instant at which these results are produced. Figure 2
depicts the parts of a real-time system. The man-machine
interface consists of input devices (like keyboards, joysticks,
and mouse) and output devices (like displays, alarm lights,
loudspeakers) that interface to a human operator.

Classification of the real-time systems

The distinction is based on the characteristics of the applica-
tion (e.g., by the consequences of missing a timing require-
ment or the systems behavior upon failures) and on factors
depending on the design and implementation of the real-
time computer system (e.g., the method of system activation
or assumptions regarding system response times).

Hard versus Soft real-time systems

Depending on the possible consequences of a missed
deadline, hard and soft real-time systems can be distin-
guished.

Hard real-time systems are characterized by the fact that
severe consequences will result if logical or timing correct-
ness properties are not satisfied. Hard real-time systems
have at least one hard deadline.

Soft real-time systems are expected to deliver correct
results within specified time intervals, but in contrast to hard
real-time systems no severe consequences or catastrophic
failures arise from missing those timing requirements.

As an example for a hard real-time system, imagine a fly-by-
wire or an anti-lock breaking system that interacts between
a pilot or driver and a physical phenomenon.

The requirement on that real-time system is that each user
activity is converted to the intended change of the controlled
object in the physical environment within a certain time
interval. In this scenario an unexpected delay can lead to
catastrophic consequences.

Fail-Safe versus Fail-Operational systems

The reaction of a system upon a critical failure is determined
by application requirements. E

Each fault has to be taken as a cause of failure. That means
there is inability to serve needed service which the system is
expected to serve. It could be the loss of optimal perform-
ance, torque, loss of signal, missing message delivery etc.
Usual causes of the system failure are faults of the system
elements or sensor faults. In these two cases are these
failures manifested as inputs integrity failure and should be
detected by fusion algorithms or algorithms that are accept-

46AT&P journal PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE

ing sensor data based on sensing other depended quanti-
ties [Vitko03] [Vitko04].

Fail-safe paradigm: This model depends on the existence
of a safe state that the system can enter upon occurrence of
a failure. The existence of such a fail-safe state depends on
the application. In fail-safe applications, the real-time com-
puter system must provide high error-detection coverage.

Fail-operational paradigm: If a safe state cannot be identi-
fied for a given application, the system has to be fail-
operational. Fail-operational real-time systems are forced to
provide at least a specified minimum level of service for the
whole duration of a mission.

An example for a fail-operational real-time system is a flight
control system aboard an aero plane. In contrast, a mobile
robot operating on the ground usually will be able to quickly
enter its safe state by stopping its propulsion, thus repre-
senting a fail-safe real-time system.

Event-Triggered versus Time-Triggered methods

A trigger is an event that initiates some action like the exe-
cution of a task or the transmission of a message. The ser-
vices delivered by a real-time computer system can be trig-
gered in two distinct ways:

Event-triggered systems: In an event-triggered system all
activities are initiated by the occurrence of events either in
the environment or in the real-time computer itself.

Time-triggered systems: A time-triggered system derives
all the activation points from the progression of physical time.

These two methods can be compared in the time domain,
issues of predictability, testability, resource utilization, ex-
tensibility, and assumption coverage. Time-triggered sys-
tems require an increased effort in the design phase of the
system, but provide an easier verification of the temporal
correctness. In event-triggered systems, it is generally diffi-
cult to make predictions about the system behavior in peak
load scenarios.

Guaranteed Response versus Best Effort

In a hard real-time system, each real-time task must be
completed within a prespecified period of time after being
requested. If any task fails to complete in time, the entire
system fails. In order to validate a hard-real time system, it
is required to ensure that all response times will always be
met. Depending on the fact if such a promise can be made,
systems can be distinguished into:

Systems with guaranteed response are validated to hold
their specified timing even in case of peak load and fault
scenarios. Guaranteed response systems require careful
planning and extensive analysis during the design phase.

Systems with best-effort design do not require a rigorous
specification of load and fault scenarios. It is though very
difficult to establish that such a system operates correctly in
rare event scenarios.

In contrast to the distinction between hard and soft real-time
systems, the difference between guaranteed response and
best-effort systems is a property of the real-time computer
system and not the real-time application.

Sensor fusion architectures
and applications

Due to the fact that sensor fusion models heavily depend on
the application, no generally accepted model of sensor

fusion exists until today. It is unlikely that one technique or
architecture will provide a uniformly superior solution [Kam-
Zhu97]. In this survey, we focus on architectures which have
been known for a relatively long period of time.

The JDL fusion architecture

A frequently referred fusion model originates from the US
Joint Directors of Laboratories (JDL). It was proposed in
1985 under the guidance of the Department of Defense. The
JDL model comprises five levels of data processing and a
database, which are all interconnected by a bus.

Fig.3. JDL fusion model

The five levels are not meant to be processed in a strict
order and can also be executed concurrently. Figure 3 de-
picts the top level of the JDL data fusion process model.

Waterfall fusion process model

The waterfall model emphasizes on the processing func-
tions on the lower levels. Figure 4 depicts the processing
stages of the waterfall model. The stages relate to the levels
0, 1, 2, and 3 of the JDL model as follows: Sensing and
signal processing correspond to source preprocessing (level
0), feature extraction and pattern processing match object
refinement (level 1), situation assessment is similar to situa-
tion refinement (level 2), and decision making corresponds
to threat refinement (level 3).

Fig.4. Waterfall fusion process model

Being thus very similar to the JDL model, the waterfall mod-
el suffers from the same drawbacks. While being more ex-
act in analyzing the fusion process than other models, the
major limitation of the waterfall model is the omission of any
feedback data flow. The waterfall model has been used in
the defense data fusion community in Great Britain, but has
not been significantly adopted elsewhere [Bedworth99].

Boyd model

Boyd has proposed a cycle containing four stages [Boyd87].
This Boyd control cycle or OODA loop (depicted in figure 5)
represents the classic decision-support mechanism in mili-
tary information operations. Because decision-support sys-
tems for situational awareness are tightly coupled with fu-
sion systems, the Boyd loop has also been used for sensor
fusion.

47AT&P journal PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE

 Fig.5. Boyd cycle

LAAS architecture

LAAS (Laboratoire d'Analyse et d'Architecture des Systé-
mes) architecture was developed as an integrated architec-
ture for the design and implementation of mobile robots with
respect to real-time and code reuse. Due to the fact that
mobile robot systems often employ sensor fusion methods,
the elements of the LAAS architecture are described in the
figure 6.

 Fig.6. LAAS architecture

The Omnibus model

The omnibus model [Bedworth99] has been presented in
1999 by Bedworth and O'Brien. Figure 7 depicts the archi-
tecture of the omnibus model. Unlike the JDL model, the
omnibus model defines the ordering of processes and
makes the cyclic nature explicit. It uses a general terminol-
ogy that does not assume that the applications are defense-
oriented. The model shows a cyclic structure comparable to
the Boyd loop, but provides a much more fine-grained struc-
turing of the processing levels. The model is intended to be
used multiple times in the same application recursively at
two different levels of abstraction. First, the model is used to
characterize and structure the overall system. Second, the
same structures are used to model the single subtasks of
the system.

Fig.7. The Omnibus model

Conclusion

Applications with certain real-time requirements can be built
using various approaches. Due to its highly deterministic
behavior, the time-triggered approach is increasingly being
recognized as a well-suited basis for building distributed
real-time systems. A time-triggered system consists of a set
of time-aware nodes. The clocks of all nodes are synchro-
nized in order to establish a global notion of time. Thus, the
execution of communication and application tasks takes
place at predetermined points in time. Except for the timing,
all nodes are independent of each other. This simplifies the
replication of services and maintenance tasks.

Therefore, time-triggered architectures also fulfill the de-
pendability requirements for the implementation of fault-
tolerant systems using independent redundant components.
Additionally, sensor fusion of redundant sensors makes an
application more robust to external and internal errors. In
case of failures, many sensor fusion algorithms are able to
provide a degraded level of service so that the application is
able to continue its operation and to provide its service.

Complexity management is supported by sensor fusion as
well as by time-triggered distributed systems. Sensor fusion
introduces an internal representation of the environmental
properties that are observed by sensors. Hence, the control
application can be decoupled from the physical sensors,
thus improving maintainability and reusability of the code.
Moreover, time-triggered architectures support a compos-
able design of real-time applications by breaking up com-
plex systems into small comprehensible components. A
system designer introduces interfaces that are well-defined
in the value and time domain to each component. Then, all
components can be implemented and tested separately.
The composability principle takes care of preserving the
separately tested functionality of components in the overall
application.

The number of sensor fusion algorithms or methods is also
numerous - the literature distinguishes filter algorithms (e.g.,
Kalman Filters), sensor agreement (e.g., voting, sensor
selection, fault-tolerant abstract sensors), world-modelling
(e.g., occupancy grids, and decision methods (e.g., Bayes
inference, Dempster-Shafer reasoning, Fuzzy logic infer-
ence). For the information integration these methods repre-
sent specific mathematical appliance which help us solve
concrete situations and issues where the sensor configura-
tion is applied.

Information integration belongs to nowadays parts of techni-
cal progress. Without information integration many systems
could not exist which are applied in autonomous or in inter-
active regimes without collision occurrence. Information
integration also shows the way of progress building. There

48AT&P journal PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE

are still different and difficult problems to solve, thus using
and improving of the mathematical appliance is needed for
information fusion in the way to guarantee the safety and
reliability of operated systems.

Support provided by grants VEGA 1/3120/06 of The Slovak
Ministry of Education is greatly appreciated.

References

[ISIF] International Society of Information Fusion
(http://www.isif.org/mission.htm)

[Durrant88] H. F. Durrant - Whyte. Sensor Models and Mul-
tisensor Integration. International Journal of Robotics Re-
search, 7(6):97113, Dec.1988.

[Vitko03] A. Vitko, M. Šavel, L. Jurišica – Fúzia senzorovej
informácie a detekcia/diagnostika porúch v robotike, AT&P
Journal 2/2003, Bratislava, Slovensko

[Vitko04] A. Vitko, M. Šavel, L. Jurišica, P. Hubinský – Data
fusion and context awareness in autonomous robotics, In-
ternational journal of Mechanics and Control, Vol.05,
No.02,2004, ISSN:1590-8844,pp 29-39

[LuoKay89] R. C. Luo and M. Kay. Multisensor Integration
and Fusion in Intelligent Systems. IEEE Transactions on
Systems, Man, and Cybernetics, 19(5):901–930, Sep.–Oct.
1989.

[Kopetz05] H. Kopetz, R. Obermaisser, P. Peti - Virtual
Networks in an Integrated Time-Triggered Architecture,
2005

[KamZhu97] M. Kam, X. Zhu, and P. Kalata. Sensor Fusion
for Mobile Robot Navigation. Proceedings of the IEEE,
85(1):108-119, Jan. 1997.

[Markin97] M. Markin, C. Harris, M. Bernhardt, J. Austin, M.
Bedworth, P. Greenway, R. Johnston, A. Little, and D.
Lowe. Technology Fore¬sight on Data Fusion and Data
Processing. Publication, The Royal Aeronautical Society,
1997.

[Bedworth99] M. D. Bedworth and J. O'Brien. The Omnibus
Model: A New Architecture for Data Fusion? In Proceedings
of the 2nd Interna¬tional Conference on Information Fusion
(FUSION'99), Helsinki, Finnland, July 1999.

[Boyd87] J. R. Boyd. A Discourse on Winning and Losing.
Unpublished set of briefing slides, Air University Library,
Maxwell AFB, AL, USA, May 1987.

Ing. Ľubomír Petrovič
prof. Ing. Ladislav Jurišica, PhD.

Slovak University of Technology
Faculty of Electrical Engineering
and Information Technology
Institute of Control and Industrial informatics
Ilkovičova 3
812 19 Bratislava
Email: lubomir.petrovic@stuba.sk

49AT&P journal PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE

