
Information fusion  
for process control  

Ľubomír Petrovič, Ladislav Jurišica 

Abstract 

The paper presents issues of information integration and information fusion for proc-
ess control. At first primary requirements for sensor system and categories for sen-
sor types are described with analysis of sensor configuration types. New approaches 
for system design with information integration in different time models are described. 
In conclusion we describe architectures and models for information integration. 
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Introduction 

Present applications, such as industrial, medical, military, 
application for safety and transportation applications depend 
on embedded computer system that interact with the real 
world. Especially dependable reactive systems that have to 
provide a critical real-time service need carefully design and 
implementation. There is need to consider four basic re-
quirements: 

Requirements for sensors: Due to limited resolution, 
cross-sensitivity, measurement noise, and possible sensory 
deprivation, an application may never depend on particular 
sensor information. 

Real-time requirements: In many cases, operations have 
to be carried out with respect to real time. Timing failures in 
such applications may endanger operator and machine. 

Dependability requirements: Since embedded systems 
are often integrated into larger systems that depend on 
embedded subsystems, the embedded systems have to be 
designed and implemented in a way that they provide a 
robust service. An embedded system might have to provide 
a particular service even in case of failure of some of its 
components. Such fault-tolerant behavior requires a proper 
design of a system with regard to the possible failure modes 
of its components. 

Complexity management requirements: There is often 
need to split a complex system, such as the software of a 
robot with distributed sensors and actuators, into small 
comprehensible subsystems in order to ease implementa-
tion and testing. 

Information integration – current state 

There is confusion in the terminology for fusion systems. 
The terms "sensor fusion", "data fusion", "information fu-
sion", "multi-sensor data fusion", and "multi-sensor integra-
tion" have been widely used in the technical literature to 
refer to a variety of techniques, technologies, systems, and 
applications that use data derived from multiple information 
sources. 

 

Fusion applications range from real-time sensor fusion for 
the navigation of mobile robots to the off-line fusion of hu-
man or technical strategic intelligence data. 

Several attempts have been made to define and categorize 
fusion terms and techniques. For example: "data fusion" can 
be used as the overall term for fusion. However, while the 
concept of data fusion is easy to understand, its exact 
meaning varies from one scientist to another. A literal defini-
tion of information fusion can be found at the homepage of 
the International Society of Information Fusion [ISIF]. ISIF is 
a organization that associates scientists oriented to area of 
information integration. This organization defines informa-
tion fusion as: 

Information Fusion encompasses theory, techniques and 
tools conceived and employed for exploiting the synergy in 
the information acquired from multiple sources (sensor, 
databases, information gathered by human, etc.) such that 
the resulting decision or action is in some sense better (qua-
litatively or quantitatively, in terms of accuracy, robustness, 
etc.) than would be possible if any of these sources were 
used individually without such synergy exploitation. 

By defining a subset of information fusion, the term sensor 
fusion is introduced as: 

Sensor Fusion is the combining of sensory data or data 
derived from sensory data such that the resulting informa-
tion is in some sense better than would be possible when 
these sources were used individually. 

Categorization of sensor  
configurations types 

In general sensor systems can be created from many differ-
ent types of sensors which information and data format are 
also different. There is need to combine these data formats 
into one readable format. Applications have to be designed 
in the way of independency, because each sensor can be 
depended on another sensor. If one of system sensors 
crash other sensors have to fully or partly represent work of 
broken sensor.  

Sensor fusion networks can also be categorized according 
to the type of sensor configuration. Durrant-Whyte [Dur-
rant88] distinguishes three types of sensor configuration: 

45AT&P journal  PLUS1 2008

VIZUÁLNE SYSTÉMY V ROBOTIKE



Complementary: A sensor configuration is called comple-
mentary if the sensors do not directly depend on each other, 
but can be combined in order to give a more complete im-
age of the phenomenon under observation. This resolves 
the incompleteness of sensor data. Sensor S2 and S3 in 
figure 1 represent a complementary configuration, since 
each sensor observes a different part of the environment 
space. 

Competitive: Sensors are configured competitive if each 
sensor delivers independent measurements of the same 
property. There are two possible competitive configurations 
- the fusion of data from different sensors or the fusion of 
measurements from a single sensor taken at different in-
stants. Competitive sensor configuration is also called a 
redundant configuration [LuoKay89]. A special case of com-
petitive sensor fusion is fault tolerance. Fault tolerance re-
quires an exact specification of the service and the failure 
modes of the system. In case of a fault covered by the fault 
hypothesis, the system still has to provide its specified ser-
vice. Sensor S1 and S2 in figure 1 represent a competitive 
configuration, where both sensors redundantly observe the 
same property of an object in the environment space. 

Cooperative: A cooperative sensor network uses the infor-
mation provided by two independent sensors to derive in-
formation that would not be available from the single sen-
sors. An example for a cooperative sensor configuration is 
stereoscopic vision - by combining two-dimensional images 
from two cameras at slightly different viewpoints a three-
dimensional image of the observed scene is derived. Sensor 
S4 and S5 in figure 1 represent a cooperative configuration. 
Both sensors observe the same object, but the measure-
ments are used to form an emerging view on object C that 
could not have been derived from the measurements of S4 
or S5 alone. 

 
Fig.1. Competitive, complementary,  
and cooperative fusion 

These three categories of sensor configuration are not mu-
tually exclusive. Many applications implement aspects of 
more than one of the three types. An example for such hy-
brid architecture is the application of multiple cameras that 
monitor a given area. In regions covered by two or more 
cameras the sensor configuration can be competitive or 
cooperative. For regions observed by only one camera the 
sensor configuration is complementary 

Real –time systems 

A real-time system consists of a real-time computer system, 
a controlled object and an operator. 

 
 Fig.2. Parts of a real-time systems 

A real-time computer system is a computer system in which 
the correctness of the system behavior depends not only on 
the logical results of the computations, but also on the phys-
ical instant at which these results are produced. Figure 2 
depicts the parts of a real-time system. The man-machine 
interface consists of input devices (like keyboards, joysticks, 
and mouse) and output devices (like displays, alarm lights, 
loudspeakers) that interface to a human operator. 

Classification of the real-time systems 

The distinction is based on the characteristics of the applica-
tion (e.g., by the consequences of missing a timing require-
ment or the systems behavior upon failures) and on factors 
depending on the design and implementation of the real-
time computer system (e.g., the method of system activation 
or assumptions regarding system response times). 

Hard versus Soft real-time systems 

Depending on the possible consequences of a missed 
deadline, hard and soft real-time systems can be distin-
guished. 

Hard real-time systems are characterized by the fact that 
severe consequences will result if logical or timing correct-
ness properties are not satisfied. Hard real-time systems 
have at least one hard deadline. 

Soft real-time systems are expected to deliver correct 
results within specified time intervals, but in contrast to hard 
real-time systems no severe consequences or catastrophic 
failures arise from missing those timing requirements. 

As an example for a hard real-time system, imagine a fly-by-
wire or an anti-lock breaking system that interacts between 
a pilot or driver and a physical phenomenon.  

The requirement on that real-time system is that each user 
activity is converted to the intended change of the controlled 
object in the physical environment within a certain time 
interval. In this scenario an unexpected delay can lead to 
catastrophic consequences. 

Fail-Safe versus Fail-Operational systems 

The reaction of a system upon a critical failure is determined 
by application requirements. E 

Each fault has to be taken as a cause of failure. That means 
there is inability to serve needed service which the system is 
expected to serve. It could be the loss of optimal perform-
ance, torque, loss of signal, missing message delivery etc. 
Usual causes of the system failure are faults of the system 
elements or sensor faults. In these two cases are these 
failures manifested as inputs integrity failure and should be 
detected by fusion algorithms or algorithms that are accept-
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ing sensor data based on sensing other depended quanti-
ties [Vitko03] [Vitko04].  

Fail-safe paradigm: This model depends on the existence 
of a safe state that the system can enter upon occurrence of 
a failure. The existence of such a fail-safe state depends on 
the application. In fail-safe applications, the real-time com-
puter system must provide high error-detection coverage. 

Fail-operational paradigm: If a safe state cannot be identi-
fied for a given application, the system has to be fail-
operational. Fail-operational real-time systems are forced to 
provide at least a specified minimum level of service for the 
whole duration of a mission. 

An example for a fail-operational real-time system is a flight 
control system aboard an aero plane. In contrast, a mobile 
robot operating on the ground usually will be able to quickly 
enter its safe state by stopping its propulsion, thus repre-
senting a fail-safe real-time system. 

Event-Triggered versus Time-Triggered methods 

A trigger is an event that initiates some action like the exe-
cution of a task or the transmission of a message. The ser-
vices delivered by a real-time computer system can be trig-
gered in two distinct ways: 

Event-triggered systems: In an event-triggered system all 
activities are initiated by the occurrence of events either in 
the environment or in the real-time computer itself. 

Time-triggered systems: A time-triggered system derives 
all the activation points from the progression of physical time. 

These two methods can be compared in the time domain, 
issues of predictability, testability, resource utilization, ex-
tensibility, and assumption coverage. Time-triggered sys-
tems require an increased effort in the design phase of the 
system, but provide an easier verification of the temporal 
correctness. In event-triggered systems, it is generally diffi-
cult to make predictions about the system behavior in peak 
load scenarios. 

Guaranteed Response versus Best Effort 

In a hard real-time system, each real-time task must be 
completed within a prespecified period of time after being 
requested. If any task fails to complete in time, the entire 
system fails. In order to validate a hard-real time system, it 
is required to ensure that all response times will always be 
met. Depending on the fact if such a promise can be made, 
systems can be distinguished into: 

Systems with guaranteed response are validated to hold 
their specified timing even in case of peak load and fault 
scenarios. Guaranteed response systems require careful 
planning and extensive analysis during the design phase. 

Systems with best-effort design do not require a rigorous 
specification of load and fault scenarios. It is though very 
difficult to establish that such a system operates correctly in 
rare event scenarios. 

In contrast to the distinction between hard and soft real-time 
systems, the difference between guaranteed response and 
best-effort systems is a property of the real-time computer 
system and not the real-time application. 

Sensor fusion architectures  
and applications 

Due to the fact that sensor fusion models heavily depend on 
the application, no generally accepted model of sensor 

fusion exists until today. It is unlikely that one technique or 
architecture will provide a uniformly superior solution [Kam-
Zhu97]. In this survey, we focus on architectures which have 
been known for a relatively long period of time. 

The JDL fusion architecture 

A frequently referred fusion model originates from the US 
Joint Directors of Laboratories (JDL). It was proposed in 
1985 under the guidance of the Department of Defense. The 
JDL model comprises five levels of data processing and a 
database, which are all interconnected by a bus.    

 
Fig.3. JDL fusion model 

The five levels are not meant to be processed in a strict 
order and can also be executed concurrently. Figure 3 de-
picts the top level of the JDL data fusion process model. 

Waterfall fusion process model 

The waterfall model emphasizes on the processing func-
tions on the lower levels. Figure 4 depicts the processing 
stages of the waterfall model. The stages relate to the levels 
0, 1, 2, and 3 of the JDL model as follows: Sensing and 
signal processing correspond to source preprocessing (level 
0), feature extraction and pattern processing match object 
refinement (level 1), situation assessment is similar to situa-
tion refinement (level 2), and decision making corresponds 
to threat refinement (level 3). 

 
Fig.4. Waterfall fusion process model 

Being thus very similar to the JDL model, the waterfall mod-
el suffers from the same drawbacks. While being more ex-
act in analyzing the fusion process than other models, the 
major limitation of the waterfall model is the omission of any 
feedback data flow. The waterfall model has been used in 
the defense data fusion community in Great Britain, but has 
not been significantly adopted elsewhere [Bedworth99]. 

Boyd model 

Boyd has proposed a cycle containing four stages [Boyd87]. 
This Boyd control cycle or OODA loop (depicted in figure 5) 
represents the classic decision-support mechanism in mili-
tary information operations. Because decision-support sys-
tems for situational awareness are tightly coupled with fu-
sion systems, the Boyd loop has also been used for sensor 
fusion. 
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 Fig.5. Boyd cycle 

LAAS architecture 

LAAS (Laboratoire d'Analyse et d'Architecture des Systé-
mes) architecture was developed as an integrated architec-
ture for the design and implementation of mobile robots with 
respect to real-time and code reuse. Due to the fact that 
mobile robot systems often employ sensor fusion methods, 
the elements of the LAAS architecture are described in the 
figure 6. 

 
 Fig.6. LAAS architecture 

The Omnibus model 

The omnibus model [Bedworth99] has been presented in 
1999 by Bedworth and O'Brien. Figure 7 depicts the archi-
tecture of the omnibus model. Unlike the JDL model, the 
omnibus model defines the ordering of processes and 
makes the cyclic nature explicit. It uses a general terminol-
ogy that does not assume that the applications are defense-
oriented. The model shows a cyclic structure comparable to 
the Boyd loop, but provides a much more fine-grained struc-
turing of the processing levels. The model is intended to be 
used multiple times in the same application recursively at 
two different levels of abstraction. First, the model is used to 
characterize and structure the overall system. Second, the 
same structures are used to model the single subtasks of 
the system. 

 

Fig.7. The Omnibus model 

Conclusion 

Applications with certain real-time requirements can be built 
using various approaches. Due to its highly deterministic 
behavior, the time-triggered approach is increasingly being 
recognized as a well-suited basis for building distributed 
real-time systems. A time-triggered system consists of a set 
of time-aware nodes. The clocks of all nodes are synchro-
nized in order to establish a global notion of time. Thus, the 
execution of communication and application tasks takes 
place at predetermined points in time. Except for the timing, 
all nodes are independent of each other. This simplifies the 
replication of services and maintenance tasks. 

Therefore, time-triggered architectures also fulfill the de-
pendability requirements for the implementation of fault-
tolerant systems using independent redundant components. 
Additionally, sensor fusion of redundant sensors makes an 
application more robust to external and internal errors. In 
case of failures, many sensor fusion algorithms are able to 
provide a degraded level of service so that the application is 
able to continue its operation and to provide its service. 

Complexity management is supported by sensor fusion as 
well as by time-triggered distributed systems. Sensor fusion 
introduces an internal representation of the environmental 
properties that are observed by sensors. Hence, the control 
application can be decoupled from the physical sensors, 
thus improving maintainability and reusability of the code. 
Moreover, time-triggered architectures support a compos-
able design of real-time applications by breaking up com-
plex systems into small comprehensible components. A 
system designer introduces interfaces that are well-defined 
in the value and time domain to each component. Then, all 
components can be implemented and tested separately.   
The composability principle takes care of preserving the 
separately tested functionality of components in the overall 
application. 

The number of sensor fusion algorithms or methods is also 
numerous - the literature distinguishes filter algorithms (e.g., 
Kalman Filters), sensor agreement (e.g., voting, sensor 
selection, fault-tolerant abstract sensors), world-modelling 
(e.g., occupancy grids, and decision methods (e.g., Bayes 
inference, Dempster-Shafer reasoning, Fuzzy logic infer-
ence). For the information integration these methods repre-
sent specific mathematical appliance which help us solve 
concrete situations and issues where the sensor configura-
tion is applied.  

Information integration belongs to nowadays parts of techni-
cal progress. Without information integration many systems 
could not exist which are applied in autonomous or in inter-
active regimes without collision occurrence. Information 
integration also shows the way of progress building. There 
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are still different and difficult problems to solve, thus using 
and improving of the mathematical appliance is needed for 
information fusion in the way to guarantee the safety and 
reliability of operated systems.  
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